AFM Objective 1.02 Statistics

Solve all problems neatly on a separate sheet of a paper. YOU MUST SHOW ALL WORK FOR CREDIT. NO WORK=NO CREDIT. Label

Due Friday, May 5th
Problem 1: A student needs to finish a class with at least an 80 in order to maintain a scholarship. The student has the following test scores in class: 75, 82, 79, 86, 89, 70, 74, and 76. The final grade is calculated by averaging the test scores and there is only one test left to take. (All test are out of 100 points.)
a. What is the lowest possible test score the student can earn to maintain the scholarship?
b. In order to make the deans list, the student must earn a 90 for this course. Is the dean's list a possibility for this student? Explain.

Problem 2: The number of pages a print cartridge can print before needing to be replaced is normally distributed. The mean for a certain printer cartridge is 480 pages before needing to be replaced with a standard deviation of 20 pages. A large office building places a bulk order for 300 of those print cartridges.
a. How many of the 300 print cartridges should be expected to print between 460 and 500 pages before needing to be replaced?
b. How many of the 300 print cartridges should be expected to print between 440 and 520 pages?

Problem 3: Look at the box and whisker plot below and answer the following questions.

a. What information can you interpret from the graph? (Median, IQR, Outliers, etc)
b. How can you describe the distribution (shape) of the data graphed?

Problem 4:

The lifetime of a particular type of car tire is normally distributed. The mean lifetime is 50,000 miles, with a standard deviation of 5,000 miles. Of a random sample of 15,000 tires, how many of the tires are expected to last for between 45,000 and 55,000 miles?

Problem 5: The frequency chart below shows the number of males in a college course catagorized by height.

Height (inches)	Number males
51-55	
56-60	
61-65	
66-70	
71-75	
76-80	
81-85	

a. What is the shape of the distribution?
b. Estimate the mean and the median.
c. How might this chart and distribution be effected if the data for the females were included?

