Released Items

Student Name:

NC Math 2

2017-2018

Copyright © 2017 by the North Carolina Department of Public Instruction. All rights reserved.

NC MAth 2 - Released Items

1 Which expression is equivalent to $\left(8 w^{7} x^{-5} y^{3} z^{-9}\right)$

$5 \frac{x^{\frac{7}{3}} z^{\frac{11}{3}}}{2 w^{\frac{5}{3}} y^{\frac{1}{3}}}$

2 A marathon is roughly 26.2 miles long. Which equation could be used to determine the time, t, it takes to run a marathon as a function of the average speed, s, of the runner where t is in hours and s is in miles per hour?
A $t=26.2-26.2 \mathrm{~s}$
8) $t=26.2-\frac{s}{26.2}$

$$
\begin{aligned}
& t(s)=\left(\frac{d}{t}\right)^{t} \text { solve for } t \\
& \frac{t s}{t}=\frac{d}{s}
\end{aligned}
$$

(D) $t=\frac{26.2}{s}$

$$
t=\frac{d}{s}
$$

$$
t=\frac{26.2}{5}
$$

NC MAth 2 - Released Items

$$
y=\frac{k}{x}
$$

3 The force, F, acting on a charged object varies inversely to the square of its distance, r, from another charged object. When the two objects are 0.64 meter apart, the force acting on them is 8.2 Newtons. Approximately how much force would the object feel if it is at a distance of 0.77 meter from the other object?
A
$F=\frac{k}{r^{2}}$
$F=\frac{3.36}{r^{2}}$
B
1.7 Newtons
d 11.9 Newtons
12.9 Newtons
$(.64)^{2}(8.2)=\left(\frac{k}{(6+5)^{2}}\right)(64)^{2}$ $k \approx 3.36$

$$
\begin{aligned}
& F=\frac{3.36}{(.77)^{2}} \\
& f \approx 5.66
\end{aligned}
$$

D

4 A system of equations is shown below.

$$
\begin{array}{ll}
\text { plug } x^{\prime} s \\
\text { into } \quad y=x^{2}+2 x+8 \\
y=-4 x \quad & \text { set equal to } \\
\text { each other }
\end{array}
$$

What is the smallest value of y in the solution set of the system?

NC MAth 2 - ReLEASED Items

5
The cost of a newspaper advertisement is a function of its size.

- A company wants its advertisement to have a height that is twice its width.
- The newspaper charges a flat rate of $\$ 50$ plus an additional $\$ 10$ per square inch. $10 x+50$
- The company can spend no more than $\$ 2,050$ on the advertisement.

What is the maximum height of an advertisement that the company can afford?

$$
\begin{aligned}
2 \omega(\omega) & =200 \\
\frac{2 \omega^{2}}{2} & =\frac{200}{2} \\
\sqrt{w^{2}} & =\sqrt{100} \\
\omega & =10
\end{aligned}
$$

NC MAth 2 - Released Items

Farmer Brown built a rectangular pen for his chickens using 12 meters of fence.

- He used part of one side of his barn as one length of the rectangular pen.
- He maximized the area using the 12 meters of fence.

Farmer Johnson built a rectangular pen for her chickens using 16 meters of fence.

- \quad She used part of one side of her barn as one length of the rectangular pen.
- The length of her pen was 2 meters more than the length of Farmer Brown's pen.
- The width of her pen was 1 meter more than the width of Farmer Brown's pen.

How much larger is Farmer Johnson's rectangular pen than Farmer Brown's?
B 24 square meters
18 square meters
B 16 square meters
(D) 14 square meters

NC MAth 2 - Released Items

7 Suppose that Jamal can choose to get home from work by taxi or bus.

- When he chooses to get home by taxi, he arrives home after 7 p.m. 8 percent of the time. Before $7 \mathrm{pm} \rightarrow 92 \%$
bus + After 7 After 7 When he chooses to get home by bus, he arrives home after 7 p.m. 15 percent of the time. Before $7 \mathrm{pm} \rightarrow 85 \%$
- Because the bus is cheaper, he uses the bus 60 percent of the time. Taxi $\rightarrow 40 \%_{0}$
What is the approximate probability that Jamal chose to get home from work by bus, given that he arrived home after 7 p.m.?

8 The graph of $f(x)=2 x^{2}-3 x+5$ will be translated 8 units down, producing the graph of $q(x)$. Which equation represents the new function, $q(x)$?
(A) $q(x)=2 x^{2}-3 x-3$ $2 x^{2}-3 x+5$
-8

$$
q(x)=2 x^{2}+5 x+5
$$

NC MATH 2 - ReLEASED Items

9 The equation $2 x^{2}-5 x=-12$ is rewritten in the form of $2(x-p)^{2}+q=0$. What is the value of q ?
(B) $\frac{71}{8}$ $\left(\frac{-\frac{5}{2}}{2}\right)^{2}$

$$
\begin{gathered}
\left.2 x^{2}-5 x=-12 \quad \begin{array}{c}
\text { multiply by } 2 \\
2\left(x^{2}-\frac{5}{2} x+\frac{25}{16}\right)
\end{array}\right)=-12+2\left(\frac{25}{16}\right)
\end{gathered}
$$

$$
\text { d } \quad \frac{25}{8}
$$

$$
\stackrel{\downarrow}{\left(-\frac{5}{4}\right)^{2}}
$$

ค $\frac{25}{16}$
\downarrow
$\frac{25}{16}$

$$
\begin{aligned}
2\left(x-\frac{5}{4}\right)^{2} & =-\frac{71}{8} \\
+\frac{71}{8} & +\frac{11}{8}
\end{aligned}
$$

$$
\begin{gathered}
2\left(x-\frac{5}{4}\right)^{2}+\frac{71}{8}=0 \\
p
\end{gathered}
$$

10 What is the value of x in the triangle below?

NC MAth 2 - Released Items

\llcorner
11 The length of a rectangular prism is $4 \sqrt{3}$ units. The height is $3 \sqrt{6}$ units. If the volume is irrational, which could be the measure of the width of the rectangular prism?

$$
\rightarrow \text { hens radical in it }
$$

$$
\begin{array}{ll}
v=1 \cdot w \cdot h & \text { when the } 2 \text { under the } \\
v=(4 \sqrt{3})(3 \sqrt{6}) \cdot w & \text { radical is multiplied by }
\end{array}
$$

(B)

$$
v=\frac{12 \sqrt{18} \cdot \omega}{} \quad \text { simplify }
$$

$v=36 \sqrt{2} \cdot \omega$

(B)	$4 \sqrt{12}$
of	$5 \sqrt{8}$
D)	$7 \sqrt{18}$

12 Which function is equivalent to $y=x^{2}-6 x+1 \phi$?

$$
\begin{aligned}
& \text { f } y=(x+3)^{2}-1 \\
& \text { B } y=(x-3)^{2}+1 \\
& \text { \& } y=(x+6)^{2}-10 \\
& \text { D } y=(x-6)^{2}+10
\end{aligned}
$$

$$
y-10+9=x^{2}-6 x+9
$$

$$
\left(\frac{-6}{2}\right)^{2}
$$

$$
\frac{y-1=(x-3)^{2}+1}{y=(x-3)^{2}+1}
$$

NC MAth 2 - Released Items

13 Triangle EGF is graphed below.

Triangle EGF will be rotated 90° counnterclockwise around the origin and will then be reflected across the y-axis, producing an image triangle. Which additional transformation will map the image triangle back onto the original triangle?
rotation 270° counterclockwise around the origin rotation 180° counterclockwise around the origin
reflection across the line $y={ }^{-} x$
(D) reflection across the line $y=x$

NC Math 2

RELEASED Items ${ }^{1}$
2017-2018
Answer Key

Item Number	Type ${ }^{2}$	Key	Percent Correct ${ }^{3}$	Standard
1	MC	A	37\%	N-RN. 2
2	MC	D	67\%	A-CED. 2
3	MC	B	40\%	A-REI. 2
4	MC	C	33\%	A-REI. 7
5	MC	D	47\%	F-IF. 8
6	MC	D	35\%	F-BF. 1
7	MC	D	20\%	S-CP. 6
8	MC	A	61\%	F-BF. 3
9	MC	B	30\%	A-REI.4a
10	MC	D	61\%	G-SRT. 8
11	MC	B	46\%	N-RN. 3
12	MC	B	67\%	A-SSE. 3
13	MC	D	23\%	G-CO. 5

