Unit 1 Day 1 Notes - Transformations \& Translations \qquad
Warm-Up:

1. Transformations: Translations

A translation, or a slide, is the movement of a figure from one position to another without turning. To the right are examples of a horizontal slide and a vertical slide.
Look at the figure below. Slide the figure 4 units to the right and 4 units up. Draw the image on the graph.

Prerequisite Skill:
Solving Systems of Equations

Solve for x and y .
2. $x=8+3 y$
$2 x-5 y=8$
3. $5 x-y=20$
$3 x+y=12$
4. $x+3 y=7$
$x+2 y=4$
5. $19=5 x+2 y$

$$
1=3 x-4 y
$$

Congruent figures Corresponding sides, angles, faces, etc. are congruent.
When two figures are congruent, you can move one so that it can be moved on to the other figure with transformations.

Transformation of a geometric figure: change in its position, size_, or shape. Preimage - \qquad figure

Notation: \qquad
Image - new or original figure
Notation: \qquad

Isometry - transformation in which preimage and image are the \qquad lengths and
angles (also called: rigid transformation__)
Examples:

\qquad , \qquad , and \qquad
Translation - an isometry that maps all points the \qquad
\qquad and the
\qquad

Activity 1: Patty Paper Translation

The translation T is defined by $\mathrm{T}(\mathrm{A})=\mathrm{B} . .$. meaning that it slides the figure the distance $A B$ in the direction that $\overrightarrow{A B}$ goes.

1) Place the patty paper over this page. Trace the triangle and points A and B.
2) Slide the patty paper along $\overrightarrow{A B}$ so that the A on the patty paper is on top of B on this sheet and B on the patty paper is still on $\overrightarrow{A B}$ on this sheet.
3) The position of the triangle on your patty paper now corresponds to the image of $\Delta X Y Z$ under the translation, T. If you press down hard with a sharp pencil, the image of the triangle can be seen on this page when you remove the patty paper.

Translation Vector - an arrow that indicates the distance and direction to translate a figure in a plane.
$\overrightarrow{A B}$ in the activity above is an example of a translation vector.
The notation for a vector is: $\langle-a, b\rangle$ for a translation a units to the left and b units up.

Three ways to describe a transformation (using example shown 1 ${ }^{* *}$ Always be specific when completing any type of description

1) Words: Translation to the right 10 units and down 4 units
2) Algebraic rule (motion rule): $T:(x, y)->(x+10, y-4)$

Vector: < 10, - $4>$

Activity 2: Dot Paper Translations

1) Use the dots to help you draw the image of the first figure so that A maps to A^{\prime}.
2) Use the dots to help you draw the image of the second figure so that B maps to B^{\prime}.
3) Use the dots to help you draw the image of the third figure so that C maps to C^{\prime}.
4) Complete each of the following translation rules using your mappings from $1-3$ above.
a) For A, the translation rule is: $T:(x, y) \rightarrow(\underline{x+9}, y-4)$ or $<\underline{9},-4>$
b) For B, the translation rule is: $\mathrm{T}:(\mathrm{x}, \mathrm{y}) \rightarrow(\underline{x-2}, \underline{y+3})$ or $<-2, \underline{3}>$
c) For C , the translation rule is: $\mathrm{T}:(\mathrm{x}, \mathrm{y}) \rightarrow\left(\frac{x+0}{}, y-1\right)$ or $<0,-1>$

Checkpoint: $\Delta \mathrm{GEO}$ has coordinates $\mathrm{G}(-2,5), \mathrm{E}(-4,1) \mathrm{O}(0,-2)$. A translation maps G to G^{\prime} $(3,1)$.

1. Find the coordinates of:
a) $E^{\prime}(1, \underline{-3})$
b) $0^{\prime}(5,-6)$
2. The translation rule is $T:(x, y) \rightarrow(\underline{x+5}, y-4)$
3. The vector is $\langle 5,-4\rangle$
4. Specifically describe the transformation: 5 rigat 4 down

Unit 1 Day 1 HW

5. Gerald is rearranging the furniture in his living room. He has to leave before he is finished, so he draws the diagram at right for his wife to place the end table. Draw the new position of the end table. Include the answers to the following questions in your explanation. Use complete sentences!

What method did you use?
Is there only one possible answer?
What does the arrow tell you?
What do you call this motion?

What could you call the table before it moved? After?

