\qquad
Unit 1 Day 1 Notes - Properties of Functions
Date \qquad
Function: a rule that assigns each element x in a set A to exactly one element called $f(x)$ in a set B. It is a dependent relationship.

- Domain: All possible vales for input (x-values)
- Increasing: as x increases, y increases
- Decreasing: as x increases, y decreases
- Range: all possible values for output (y-values)

Interval Notation: Used to describe intervals of real numbers.
Parentheses, brackets, or a combination of both.
(): use when an endpoint is NOT included
[]: used when an endpoint is included

- The infinity symbol, ∞, is used to denote an interval that extends forever to the right.
- The negative infinity symbol, $-\infty$, is used to denote an interval that extends forever to the left.
- The numbers used in interval notation always go from left to right on the number line.
- Union " U ": symbol used to join 2 sets of real numbers.

The Vertical Line Test: If a vertical line (pencil) intersects the graph more than one point at a time, the graph is NOT a function.

Examples: Determine if the graph is a function. If so, state the domain and range.

Asymptotes (in rational functions): a "line" that the graph of a functions approaches but will never touch Vertical Asymptote: affects domain; found by setting denominator $=0$ Horizontal: affects the range; based on degree of numerator and denominator

Open Circle on graph: value not included
Closed Circle on graph: value is included

Examples: Determine the interval on which the function increases, decreases, or is constant.
1.

$$
\begin{aligned}
& \text { Dec: }(-6,-2] \\
& \text { Inc: }(-2, \infty) \\
& \text { Con: }(-\infty,-6]
\end{aligned}
$$

2.

$$
\text { Dec: }[1, \infty)
$$

Inc: $(-\infty, 1]$
Con: None / N/A
3.

Dec: $(1, \infty)$
Inc: $(-\infty, 1)$
Con: None
4.

Dec: $(-2,2)$
Inc: $(-\infty,-2] \cup[2, \infty)$

Sketch the graph of the following functions. Find the domain, range, and the interval of increase/decrease.

