Math 2 Unit 1 Day 1 Notes – Rotations

Name:_	Key	
Date:		

Warm-Up: Given triangle ABC with A(-1, 4), B(4, 3) and C(1, -5), graph the image points after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for each.

4. Visualizing Rotations Centered About the Origin

The flag shown below is rotated about the origin 90°, 180°, and 270°. Flag ABCDE is the preimage. Flag A'B'C'D'E' is a 90° counterclockwise rotation of ABCDE.

R<u>origin</u>, 90

Example: R 0,90°

5. Rotations on the Coordinate Plane Exploration

1) Triangle ABC has coordinates A(2, 0), B(3, 4), C(6, 4). Trace the triangle and the x- and y-axes on patty paper. 2) Rotate Triangle ABC 90°, using the axes you traced to help you line it back up. Record the new coordinates. A'($A'(0, \lambda), B'(-4, 3), C'(-4, 6)$

$$\frac{\gamma}{\gamma} \times -\gamma \times -\gamma \times R_0^{0} \cdot (x, \gamma) \rightarrow (-\gamma, x)$$
(3 turns)

2) Potato Triangle APC 270° using the avec you traced to help you line it up. P

3) Rotate Triangle ABC 270°, using the axes you traced to help you line it up. Record the new coordinates. A'(_______ $\begin{array}{c} A(O, -\lambda), B'(-4, -3), C'(-4, -6) \\ y -x & y -x \end{array} , B'(-4, -3), C'(-4, -6) \\ R_0 \lambda^{70} : (x, y) \rightarrow (y, -x) \end{array}$

4) Rotate Triangle ABC 180°, using the axes you traced to help you line it back up correctly. Record the new

coordinates. A'($-\lambda$, 0), B'(-3, -4), C'(-6, -4) -x -y -x -y -x -y R₀ 180[•]: (x,y) -> (-x, -y)

Checkpoint: Look at the patterns and complete the rule. Then write the rule using proper notation for 1 – 3.

- 1. A 90° counter-clockwise rotation maps $(x, y) \rightarrow (- y_{-}, x_{-})$. Notation: $R_{o} = 90^{\circ}$
- 2. A 270° counter-clockwise rotation maps $(x, y) \rightarrow (\underline{\gamma}, \underline{\gamma})$. Notation: <u>R</u> 270° F
- 3. A 180° rotation maps $(x, y) \rightarrow (-x, -y)$. 4. A rotation of 270° clockwise is equivalent to a rotation of _______ O _____ counter ~clockwise -
- 5. A rotation of 270° counterclockwise is equivalent to a rotation of <u>90° clockwise</u>

K Rotations with Polygons

Part 1 – Regular Polygons and rotation symmetry

A few definitions to support you as you work:

A **regular polygon** is a **polygon** that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). In the case of **regular polygons** the **center** is the point that is equidistant from each vertex

- 1. Given regular triangle EFG with center 0.
 - a. F is rotated about 0. If the image of F is G, what is the angle of rotation?
 - b. \overline{FG} is rotated 120° about 0. What is the image of \overline{FG} ?

General Rule: The regular triangle has rotation symmetry with respect to the center of the polygon

0

D

С

G

____ triangle or an _____ triangle.

н

F

Δ

and angles of rotation that measure _____ and _____.

Side note: A regular triangle is also called an

- 2. Given regular quadrilateral EFGH with center 0.
 - a. F is rotated about 0. If the image of F is G, what is the angle of rotation?
 - b. F is rotated about 0. If the image of F is H, what is the angle of rotation?
 - c. \overline{FG} is rotated 270° about 0. What is the image of \overline{FG} ?

General Rule: The regular quadrilateral has rotation symmetry with respect to the center of the polygon and angles of rotation that measure ____, ____, and ____.

Side note: A regular quadrilateral is often called a .

3. Given regular pentagon ABCDE with center 0,

- a. Cls rotated about 0. If the image of C is D, what is the angle of rotation?
- b. C is rotated about 0. If the image of C is E, what is the angle of rotation?
- c. C is rotated about O. If the image of C is A, what is the angle of rotation?
- d. $\overline{\text{DC}}$ is rotated 288° about 0, what is the image of $\overline{\text{DC}}$?
- e. Pentagon ABCDE is rotated 72° about 0, what is the image of pentagon ABCDE (in terms of the original points' labels do not use A'B'C'D'E')?
- f. Explain the significance of the multiples of 72°.

General Rule: The regular pentagon has rotation symmetry with respect to the center of the polygon

and angles of rotation that measure ____, ____, ____, ____ and _

4. Given regular hexagon ABCDEF with center 0, C is rotated 60° about O, what is the image of C? a. С b. C is rotated 120° about Q, what is the image of C? F C is rotated 180° about O, what is the image of C2 C. d. \overline{DC} is rotated 240° about 0, what is the image of \overline{DC} ? e. Explain the significance of the multiples of 60°. General Bule: The regular hexagon has rotation symmetry with respect to the center of the polygon and angles of rotation that measure ____, ___, ___, ___, ___, and Given regular octagon ABCDEFGH with center O, a. When point C is rotated about 0, the image of point C is point G D. Describe the rotation (be sure to include degree). Н b. When point C is rotated about 0, the image of point C is point F. Describe the rotation (be sure to include degree). A regular polygon can be mapped onto itself if we rotate in multiples of the central angle measure. The central angle of a regular polygon is found by _ Part 2 – Parallelograms and rotation symmetry 6. Given parallelogram ABCD, there is a center of rotation, O, that will map point A onto point C. 3 a. What are the coordinates of O? В 2 b. What degree of rotation mapped C onto A using 1 the center O? С D c. If we rotate the parallelogram around center 0 6 -1 0 5 using the degree measure found in part b, angle D maps to angle _ d. If angle A maps to angle C, then angle A and angle C are _____. e. If angle D maps to angle ____, then angle D and angle ____ are _____.