Math 2

Unit 1 Day 1 Notes - Rotations
Name: \qquad
Date: \qquad

Warm-Up: Given triangle ABC with $\mathrm{A}(-1,4), \mathrm{B}(4,3)$ and $\mathrm{C}(1,-5)$, graph the image points after the following transformations, identify the coordinates of the image, and write the Algebraic Rule for each.
(1) Translate triangle ABC left 3, up 2

Points:
$A^{\prime}(-4,6) \quad C^{\prime}(-2,-3)$
$B^{\prime}(1,5)$

Algebraic Rule:
$T:(x, y) \rightarrow(x-3, y+2)$
2) Translate triangle ABC right 2, down 1

Points:
Algebraic Rule:

$$
\begin{aligned}
& A^{\prime \prime}(6,3) \quad C^{\prime \prime}(3,-6) \quad T:(x, y) \rightarrow(x+2, y-1) \\
& B^{\prime \prime}(6,2)
\end{aligned}
$$

4. Visualizing Rotations Centered About the Origin

The flag shown below is rotated about the origin $90^{\circ}, 180^{\circ}$, and 270°. Flag ABCDE is the preimage. Flag $A^{\prime} B^{\prime} C^{\prime} D^{\prime} E^{\prime}$ is a 90° counterclockwise rotation of ABCDE.

NOTE: Unless otherwise specified, the standard for rotations is counterclockwise!

Notation for Rotations

R \qquad
Example: R $0,90^{\circ}$

5. Rotations on the Coordinate Plane Exploration

1) Triangle $A B C$ has coordinates $A(2,0), B(3,4), C(6,4)$. Trace the triangle and the x - and y-axes on patty paper.
2) Rotate Triangle $A B C^{9} 90^{\circ}$, using the axes you traced to help you line it back up. Record the new coordinates. $A^{\prime}($ $A^{\prime}\left(\frac{0}{y}, \frac{2}{x}\right), B^{\prime}\left(\frac{-4}{-y}, \frac{3}{x}\right), C^{\prime}\left(\frac{-4}{-y}, \frac{6}{x}\right)$

$$
R_{0} 90^{\circ}:(x, y) \rightarrow(-y, x)
$$

(3 turns)
3) Rotate Triangle $\mathrm{ABC} 270^{\circ}$, using the axes you traced to help you line it up. Record the new coordinates. $\mathrm{A}^{\prime}($ \qquad $A^{\prime}\left(0, \frac{-2}{-x}\right), B^{\prime}\left(\frac{4}{y}, \frac{-3}{-x}\right), C^{\prime}\left(\frac{4}{y}, \frac{-6}{-x}\right) \quad R_{0} 270^{\circ}:(x, y) \rightarrow(y,-x)$
4) Rotate Triangle ABC 180°, using the axes you traced to help you line it back up correctly. Record the new coordinates. $A^{\prime}(\underline{-2}, \underline{0}), B^{\prime}(\underline{-3},-4), C^{\prime}(\underline{-6},-4)$

$$
\begin{array}{rrr}
-x-y \quad-x & -y \quad-x-y \\
& R_{0} 180^{\circ}:(x, y) \rightarrow(-x,-y)
\end{array}
$$

Checkpoint: Look at the patterns and complete the rule. Then write the rule using proper notation for 1-3.

1. A 90° counter-clockwise rotation maps $(x, y) \rightarrow(\simeq y,-x)$.

Notation:

2. A 270° counter-clockwise rotation maps $(x, y) \rightarrow(-y-2 x$). Notation: \qquad
3. A 180° rotation maps $(x, y) \rightarrow(-x,-y)$.

Notation: \qquad
4. A rotation of 270° clockwise is equivalent to a rotation of \qquad
5. A rotation of 270° counterclockwise is equivalent to a rotation of \qquad

Part - Regular Polygons and rotation symmetry
A few definitions to support you as you work:
A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides hav the same length $>$ In the case of regular polygons the center is the point that is equidistant from each vertex.

1. Given regular triangle EFG with center 0 .
a. F is rotated about O . If the image of F is G , what is the angle of rotation?
b. $\overline{\mathrm{FG}}$ is rotated 120° abrut 0 . What is the image of $\overline{\mathrm{FG}}$?

General Rule: The regular triangle has kotation symmetry with respect to the center of the polygon and angles of rotation that measure \qquad and \qquad .

Side note: A regular triangle is also called an
2. Given regular quadrilateral EFGH with center O .
a. F is rotated about O . If the image of F is G , what is the angle ofrotation?
b. F is rotated abont 0 . If the image of F is H , what is the angle of rotation?
c. $\overline{\mathrm{FG}}$ i. . otated 270° about 0 . What is the image of $\overline{\mathrm{FG}}$? triangle or an \qquad triangle.
\qquad
 and angles of rotation that measure \qquad , \qquad and \qquad

Side note: A regular quadrilateral is often called a \qquad .
3. Given regular pentagon ABCDE with center 0 ,
a. Cisrotated about 0 . If the image of C is D, what is the angle of rotation?
b. C is rotated about O . If the image of C is E , what is the angle of rotation?
c. C is rotated about 0 . If the image of C is A , what is the angle of rotation?
d. $\overline{\mathrm{DC}}$ is rotated 288° about O , what is the image of $\overline{\mathrm{DC}}$?

e. Pentagon $A B C D E$ is rotated 72° 2hout 0 , what is the image of pentagon ABCDE (in terms of the original points' labels - donot use $\left.A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime} \mathrm{D}^{\prime} \mathrm{E}^{\prime}\right)$?
f. Explain the significance of the multiples of 72°.

General Rule: The regular pentagon has rotation symmetry with respect to the center of the polygon and angles of rotation that measure \qquad , \qquad , \qquad and \qquad -.
4. Given regular hexagon ABCDEF with center O ,
a. C is rotated 60° about 0 , what is the image of C ?
b. C is rotated 120° about 0 , what is the image of C ?
c. C is rotated 180° about 0 , what is the image of C2
d. $\overline{\mathrm{DC}}$ is rotated 240° about 0 , what is the image of $\overline{\mathrm{DC}}$?
e. Explain the significance of the multiples of 60°.

General Bute: The regular hexagon has rotation symmetry with respect to the center of the polygon and angles of rotation that measure \qquad and \qquad .
5. Given regular octagon ABCDEFGH with center 0 ,
a. When point C is rotated about 0 , the image of point C is point D. Describe the rotation (be sure to include degree).
b. When point C is rotated about 0 , the images f point C is point F. Describe the rotation (be sure to include degree).

A regular polygon can be mapped onto itself if we rotate in multiples of the central angle measure.
The central angle of a regular polygon is found by

Part 2 - Parallelograms and rotation symmetry
6. Given parallelogram ABCD , there is a center of rotation, O, that will map point A onto point C
a. What are the coordinates of 0 ?
b. What degree of rotation mapped C onto A using the center 0 ?
c. If we rotate the parallelogram around center O using the degree measure found in part b, angle D maps to angle \qquad .
d. If angle A maps to angle C, then angle A and angle C are \qquad -.
e. If angle D maps to angle \qquad then angle D and angle \qquad are \qquad .

