Name:_	Ver	
Date:	<u> </u>	

A system of equations: A set of $\frac{1}{100}$ or more equations.

A <u>solution</u> is a set of values for the variables that makes all the equations true.

When the "solution" is <u>plugged</u> into the linear equations the result will be a <u>true</u> statement.

Method 1: Graphing

- Solve each equation for y.
- Enter the first equation into Y₁.
- Enter the second equation into Y₂.
- Use the **INTERSECT** option to find where the two graphs intersect (the answer).

Example #2 Application: There are **25 bikes and trikes** at the park. The bikes and trikes

have 60 wheels in all. How many bikes and trikes are in the park? x: b:kes (2 wheels) y: trikes (3 wheels) $x + y = 25 \rightarrow y = -x + 25$ $2x + 3y = 60 \rightarrow y = -\frac{2}{3}x + 20$ (15,10) Your try. Solve by graphing. (You can do these by hand or with a calculator!)

4. Pedro can choose between two tennis courts at two university campuses to learn how to play tennis. One campus charges \$25 per hour. The other campus charges \$20 per hour plus a one –time registration fee of \$10. Write a system of equations to represent the cost c for h hours of court use at each campus. Find the number of hours for which the

costs are the same.

$$c = 25h = 25h = 20h + 10 = -20h = 220h = -20h = -$$

Method 2: Algebraically using Elimination

Basic Goal: Add the two equations together so that the x or y is eliminated.

Example #1: $(x - 2y = 14)^{-1}$ x + 3y = 9 x + 3(-1) = 9 x + 2y = -14 x = 14 x + 2y = -14 x = 14 x = 13 x = 13y = -1 (12, -1)

What if the coefficients aren't the same: No Problem! Follow the steps below.

- Basic Steps:1. Arrange equations so variables.
- equal signs and constants line up vertically.
- Multiply one or both equations by a value so that one variable in the 1st equation has the opposite coefficient in the other equation.

- 3. Add the two equations.
- 4. Solve for the remaining variable.
- 5. Use the solution from step 4 and substitute into either equation. Solve for the remaining variable.

Example #2:
$$(x - 2y = 12)^{6}$$
 $x - 2(-7) = 12$
 $5y = 6x - 23$ $x + y = 12$
 $-6x - 12y = -23$ $x + y = 12$
 $-6x - 12y = -23$ $x = -2$
 $-6x - 12y = -23$ $x = -2$
 $-7y = -12y = -23$ $x = -2$
 $-7y = -12y = -23$ $x = -2$
 $-7y = -12y = -23$ $x = -2$

Practice with Elimination;/Solve using elimination

x - 2y = 13	$(x - y = 5)^{2}$	$\sqrt{2x+8y=6}^{5}$	$(5x + 4y = -14)^3$ $5x + 9(4) = -14$
$\frac{3x + 2y}{4x} = \frac{15}{28}$	$\frac{3x + 2y = 15}{3x - 2y = 10}$	(-5x - 20y = -15)	$(3x + 6y = 6)^{-3}$
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	4x = 5	$\frac{-100x}{0} = -100x$	$\frac{-15 \times -30 \times = -30}{-15 \times = -20}$
$\frac{11}{-2y} = 13$	1 - y = S (1,-4)	Infinite Solutions	→ + - + + + + + + + + + + + + + + + + +
-2 -2 -2 -3	4y=4 11 -1 v=-4		

Application: The Algebra 2 classes took 60 minutes to answer a combination of 20 multiple-choice and extended-response questions. The class took 2 minutes to answer each multiple choice question and 6 minutes to answer each extended-response question. a. Write a system of equations to model the relationship between the number of multiple choice questions **m** and the the number of extended-response questions **r**.

$$\frac{\frac{1}{4}}{\frac{1}{4}} \frac{1}{4} \frac{1}{4}$$

b. How many of each type of questions was on the test?

Method 3: Substitution

 Solve one of the equations for either "x =" or "y =".

This example solves the second equation for "y=".

2. Replace the "*y*" value in the first equation by what "*y*" now equals.

Example #1:

$$2x - 3y = -2$$

 $4x + y = 24$
 $y = -4x$
 $y = -2x$
 $y = -2x$

- 3. Solve this new equation for "*x*".
- 4. Place this new "*x*" value into either of the ORIGINAL equations in order to solve for "*y*".
- 5. CHECK the solution in BOTH Equations!

Example #2:

$$5x + 8y = 11$$

$$x + 3y = -9$$

$$-3y - 3y$$

$$x = -3y - 9$$

$$x = -3y - 9$$

$$x = -3y - 9$$

$$x = -3(-8) - 1$$

$$x = 24 - 9$$

$$(15, -8)$$

$$y = -9$$

$$y = -9$$

$$\frac{-7y + 45 + 8y = 11}{+45 + 45}$$

$$\frac{-7y + 45 + 8y = 11}{+45 + 45}$$

$$\frac{-7y + 45 + 8y = 11}{+45 + 45}$$

$$\frac{-7y + 45 + 8y = 11}{+45 + 45}$$

Applications with Systems ~ Pick a Method

Suppose that the Greene Cell Phone company charges \$50 per month plus 15 cents per minute while the Johnston Cell Phone Company charges no monthly fee but 25 cents per minute. After how many minutes of phone usage would a monthly phone bill be the same from both companies?

Jake's Surf Shop rents surfboards for \$6.00 plus \$3.00 per hour. Rita's rents them for \$9.00 plus \$2.50 per hour.

- After how many hours of surfing will the rental fee be the same for both surf shops?
 - X: hours y = 3x + 6y: cost y = 2.5x + 9 3x + 6 = 2.5x + 9 -2.5x - 2.6x 5x + 6 = 9 5x + 6 = 9 5x + 6 = 95x + 6 = 9
- You only want to surf for 2 hours; which Surf Shop should you go to?

```
J: y = 3(2) +6
$12 Jack's Surf Shop
R: y = 2.5(2)+9
$14
```