Math 3
Unit 1 Day 2 Notes - Solving Systems

Name: Key
\qquad

A system of equations: A set of two or more equations.
\qquad is a set of values for the variables that makes all the equations true.

When the "solution" is _plugged_into the linear equations the result will be a true statement.

- Solve each equation for y .
- Enter the first equation into Y_{1}.
- Enter the second equation into Y_{2}.
- Use the INTERSECT option to find where the two graphs intersect (the answer).

2nd TRACE (CALC) \#5 intersect
Move spider close to the intersection.

$$
\begin{aligned}
& 4 x-6 y=12 \\
&-4 x \quad-4 x \\
& \hline-7 y=\frac{-4 x+12}{-6}-6
\end{aligned}
$$

Hit ENTER 3 times.
Example \#1: $4 x-6 y=12$

$$
2 x+2 y=6
$$

$(3,0)$

Example \#2 Application: There are 25 bikes and trikes at the park. The bikes and trikes have 60 wheels in all. How many bikes and trikes are in the park?
x : bikes (2 wheels)
$x+y=25 \rightarrow y=-x+25$
$2 x+3 y=60 \rightarrow y=\frac{-2}{3} x+20$

Your try. Solve by graphing. (You capl do these by hand or with a calculaftor!)

1. $-3 x+2 y=8$
$x+2 y=-8$
$y=\frac{3}{2} x+4$
$y=-\frac{1}{2} x-4$
$(-4,-2)$

2. $\begin{aligned} & 2 x-y=3 \\ & 5 x-3 y=9 \\ & y=2 x-3 \\ & y=2 x-3\end{aligned}$
3. Pedro can choose between two tennis courts at two university campuses to learn how to play tennis. One campus charges $\$ 25$ per hour. The other campus charges $\$ 20$ per hour plus a one -time registration fee of $\$ 10$. Write a system of equations to represent the cost c for h hours of court use at each campus. Find the number of hours for which the costs are the same.

$$
\begin{array}{ll}
c=25 h & \begin{array}{l}
25 h=206+10 \\
c=20 h+10
\end{array} \\
\frac{-20 h+20 h}{5}=\frac{10}{5} \quad h=2
\end{array}
$$

Method 2: Algebraically using Elimination

Basic Goal: Add the two equations together so that the x or y is eliminated.
Example \#1: $(x-2 y=14)^{1}$

What if the coefficients aren't the same:
No Problem! Follow the steps below.
Basic Steps:

1. Arrange equations so variables, equal signs and constants line up vertically.
2. Multiply one or both equations by a value so that one variable in the $1^{\text {st }}$ equation has the opposite coefficient in the other equation.
3. Add the two equations.
4. Solve for the remaining variable.
5. Use the solution from step 4 and substitute into either equation. Solve for the remaining variable.

Example \#2:

Practice with Elimination:/Solve using elimination

Application: The Algebra 2 classes took 60 minutes to answer a combination of 20 multiple-choice and extended-response questions. The class took 2 minutes to answer each multiple choice question and 6 minutes to answer each extended-response question. a. Write a system of equations to model the relationship between the number of multiple choice questions m and the the number of extended-response questions r.

$$
\begin{array}{rl}
(m+r=20)^{-2} & m+5=20 \\
-2 w+6 r=60 & \frac{4 r}{4}=\frac{26}{4}
\end{array} \quad r=5 \quad(15,5)
$$

b. How many of each type of questions was on the test?

$$
m=15 \quad r=5
$$

Method 3: Substitution

1. Solve one of the equations for either " x $=$ " or " $\mathrm{y}=$ =".
This example solves the second equation for " $y=$ ".
2. Replace the " y " value in the first equation by what " y " now equals.

3. Solve this new equation for " x ".
4. Place this new " X " value into either of the ORIGINAL equations in order to solve for " y ".
5. CHECK the solution in BOTH Equations!

Example \#2:

$$
\begin{aligned}
& \begin{array}{ll}
5 x+8 y=11 & 5(-3 y-9)+8 y=11 \\
-15 y-45+8 y & =11
\end{array}
\end{aligned}
$$

Applications with Systems ~ Pick a Method

Suppose that the Greene Cell Phone company charges $\$ 50$ per month plus 15 cents per minute while the Johnston Cell Phone Company charges no monthly fee but 25 cents per minute. After how many minutes of phone usage would a monthly phone bill be the same from both companies?

$$
\begin{array}{rlrl}
x: \text { minutes } & y=.15 x+50 & y=.25 x & -0 . \int 5 x+50 \\
y: \text { cost } & =.25 x \\
& & -.15 x \\
\frac{50}{.10} & =\frac{.7 \$ x}{.10} \\
x & =500 \text { minutes }
\end{array}
$$

Jake's Surf Shop rents surfboards for $\$ 6.00$ plus $\$ 3.00$ per hour. Rita's rents them for $\$ 9.00$ plus $\$ 2.50$ per hour.

- After how many hours of surfing will the rental fee be the same for both surf shops?

$$
\left.\begin{array}{lll}
x: \text { hours } & y=3 x+6 & 3 x+6=-25 x+9 \\
y: \text { cost } & y=2.5 x+9 & -\frac{25 x}{.5 x+6}=9
\end{array}\right] \frac{y x}{7}=\frac{3}{.5}
$$

- You only want to surf for 2 hours; which Surf Shop should you go to?
$\mathrm{J}: \quad y=3(2)+6$
\$12
Jacle's Surf Shop
$R: y=2.5(2)+9$
\$14

