

Date: \qquad

Absolute value variable equations are written as:

- $\mathrm{f}(\mathrm{x})=|\mathrm{mx}+\mathrm{b}|+c \rightarrow a|m x+b|+c$
- Graph looks like a right side up or upside down \qquad
- Opens up if the coefficient in front of the absolute value symbols is parities.

$$
f(x)=4|x+2|+3 \quad \text { opens up }
$$

- Opens down if the coefficient in front of the absolute value symbols is negative.

$$
f(x)=-4|x+2|+3 \text { opens down }
$$

- The vertex of the graph will be $\left(-\frac{b}{m}, c\right)$. You can use your calculator to find it!!

Let's start with $f(x)=|x|$ and graph the equation. This is called the parent function.

What's the vertex? (으응
Does it open up or down? \qquad Domain: $(-\infty, \infty)$ Range: $[0, \infty)$ $\stackrel{(x)}{\longleftrightarrow}$ (y)
\longleftrightarrow ป

You try $f(x)=|x+2|$. How is it different from the parent graph? shifted left 2 units

What's the vertex? (-2, $\mathbf{0}$)
Does it open up or down? Up
Domain: $(-\infty, \infty)$ Range: $[0, \infty)$

Now try:
$\mathrm{f}(\mathrm{x})=|\mathrm{x}|+2$. How is it different from the parent graph?

What's the vertex? ($\underline{0}, \underline{2}$)
Does it open up or down? Up
Domain \qquad Range: $[2, \infty)$

Vertical Transformations:

A constant added outside the absolute value symbol shifts the graph UP that many units. $f(x)=|x|+5$ moves the parent graph _u pau_

A constant subtracted outside the absolute value symbol shifts the graph DOWN that many units. $f(x)=|x|-3$ moves the parent graph dow n

Horizontal Transformations:

A constant added inside the absolute value symbols shifts the graph LEFT horizontally.
$f(x)=|x+2|$ moves the parent graph \qquad left

A constant subtracted inside the absolute value symbols shifts the graph RIGHT horizontally.
$f(x)=|x-2|$ moves the parent graph \qquad

Reflection over the x-axis:

Reflection over the x-axis:
If you have a begat iv l in front of the absolute value, the graph will be reflected or flips_ over the
x-axis.

$$
f(x)=-|x| \text { moves the parent graph reflected over the } x \text {-axis }
$$

$\begin{array}{lr}\begin{array}{l}\text { Vertical Stretch/Compression: } \\ a \cdot f(x) \text {, where } \text { ais a real number }>0\end{array} & f(x)=a|m x+b|+c y \text { up ordown } \\ \text { Ieffor right }\end{array}$
If $a>1$, then $f(x)$ has a vertical strides by a factor of \mathbb{Q} units.
$f(x)=2|x|$ How does this compare to the parent? Strides by a factor of 2
$f(x)=0.5|x|$ How does this compare to the parent? stretches by a fader of 0.5

Quick Recap:

In what way would the graph of $y=|x|$ move according to the following equations? Be specific.

1. $y=4|x+3|-5$
2. $y=-|x-2|+7$
vertical shrink by a factor of 4
reflected over the x-axis
shifts left 3 units
shifts down 5 units
shifts right 2 units
Application:
shifts up 7 units

A rainstorm begins as a drizzle, builds up to a heavy rain, and then drops back to a drizzle. The rate r (in inches per hour) at which it rains is given by the function $r=-0.5|t-1|+0.5$ and t represents time in hours.

Graph the function.
How long does it rain?

When does it rain the hardest?

What is the rate of the rain after 30 minutes?

