Math 3

Unit 1 Day 5 Notes - Systems \& Inequalities of Absolute Value Functions

| \leq or \geq | 0 |
| :--- | :--- | :--- |
| \angle or $>$ | 0 |

$\begin{array}{r}|2 x-4|+\mid=17 \\ \hline|2 x-4|=10\end{array}$

$$
\frac{\begin{array}{c}
x+7 \leq 17 \\
+3
\end{array}}{x \leq 20} \left\lvert\, \frac{\begin{array}{c}
x-3 \geq-17 \\
+3
\end{array}+3}{x \geq-14}\right.
$$

$$
|x-3| f \mid \leq-8
$$

$$
|x-3| \leq-1
$$

Less than + negative \#
\downarrow Always False
No Solution

Graphing Absolute Value Inequalities Example 1

$$
\begin{aligned}
& \leq \text { or } Z \rightarrow \text { solid line } \\
& L \text { or }\rangle \rightarrow \text { dofteol } \\
& \vdots \text { or } a \rightarrow \text { below } \\
& Z \text { or }\rangle \rightarrow \text { dove }
\end{aligned}
$$

Similarly to Linear and Quadratic Equations, you will graph the function using dashed and solid lines.
Afterwards, choose a test point to see where the shading needs to take place. change sign

$$
\begin{aligned}
& \begin{array}{l}
\text { Change sign } \\
y \leq x-2 \mid+5 \text { keep sign } \\
\\
\quad \text { Vertex: }(2,5)
\end{array}
\end{aligned}
$$

Example 2
Graph the following Absolute Value Inequality.

$$
y>|x-6|+4
$$

$$
\text { Vertex: }(6,4)
$$

Example 3

Graph the following Absolute Value Inequality.

$$
\begin{aligned}
& y<-|x+2|+7 \\
& \quad \text { Vertex: }(-2,7)
\end{aligned}
$$

\qquad

To solve systems of absolute value equations, graph both equations on the same graph. Find the points of intersection. There can be two, one, or no solutions.

Example 1

Graph to Solve the System.
$y=|x-3|-4$
$y=-|x-3|+6$

Example 2

Graph to Solve the System.
$y=|x+2|-4$
$y=-|x-2|+4$

Steps to Solving Systems of Absolute Value Equations Using Your Calculator

1. Solve equations for y.
2. Enter equations into y_{1} and y_{2}.
3. Graph.
4. $2^{\text {nd }}$ Calculate

5. enter, enter, enter

Example 1

Graph to Solve the System using the By Hand and with the Calculator.
$y=|x+3|-5$
$y=|x-3|-5$

