Classwork: Given the patterns seen above, can you predict the domain/range of an image given a pre-image domain/range? Let's try:

1. Given a relation composed of points $\mathrm{A}(2,5), \mathrm{B}(1,-6)$, and $\mathrm{C}(4,7)$,
a. State the domain and range of the relation:
D: \{ \qquad \}
R: $\{$ \qquad

Side note about notation:
**If your data are Discrete, their domain is a list of values
written in this notation: $\{1,5,7\}$
**If your data are continuous, their domain is an interval of values written in a variety of notations.

We are using this: $-7 \leq x<3$
b. State the domain and range of the image when the relation is:
i. Translated right 2 and down 3 :
iv. Reflected in the line $y=x$:
D: \qquad
R: \qquad
D: $\{$ \qquad \} R: \{ \qquad
ii. Reflected in the x -axis:
v. Rotated 90° :
D: $\{$ \qquad _\}
R: \qquad

D: \qquad \} $R:\{$ \qquad
iii. Reflected in the y-axis:
vi. Dilated by a factor of 7 with a center of $(0,0)$:
D: \{ \qquad R: \qquad
D: $\{$ \qquad \} R: \{ \qquad
2. Given a line segment with endpoints $(0,4)$ and $(3,0)$,

b. State the domain and range of the image when the relation is:
i. Translated right 2 and down 3 :
iv. Reflected in the line $y=x$:

D: \qquad D: \qquad
R: \qquad R: \qquad
ii. Reflected in the x -axis:
v. Rotated 90° :

D: \qquad
D: \qquad
R: \qquad
R: \qquad
iii. Reflected in the y-axis:

D: \qquad
R: \qquad
vi. Dilated by a factor of 7 with a center of $(0,0)$:

D: \qquad
R: \qquad
3. Is there a way to use your known algebra rules to predict the domain and range of an image give information about the pre-image?

