

Graph $g(x)=\frac{2}{2}+4$ and fill in the table. Graph $f(x)=2 x-8$ and fill in the table:
(graph these on the same graph below:)

	$g(x)$
-4	2
-3	
-2	3
-1	
0	4
1	
2	
3	
4	
5	

x	$f(x)$
-4	
-3	
-2	
-1	
0	
1	
2	-4
3	-2
4	0
5	

What do you notice about the ordered pairs in each function? Is there a relationship between $f(x)$ and $\mathbf{g}(\mathbf{x})$? $\quad \times+y$ values are

How do I find inverses?

1. Find the Domain and the Range_ of the given equation.
2. Switch x and $y _$in the equation.
3. Solve for \qquad -
4. Make the range become the new Domain of the new equation, and make the domain become the new Range_ of the new equation.

Example 2: y $\text { ple 2: } \begin{aligned} & y=3(x+2)^{2}-4 \quad f(x)=3(x+2)^{2}-2 \\ & x=3\left((y+2)^{2}+4\right. \\ &+4 \\ & \frac{x+4}{3}=\frac{3(y+2)^{2}}{3} \\ & \sqrt{\frac{x+4}{3}}=\sqrt{(y+2)^{2}} \quad f^{-1}(x)=\sqrt{\frac{x+4}{3}}-2 \\ & \sqrt{\frac{x+4}{3}}=y^{+}+2 \\ & \sqrt{\frac{x+4}{3}}-2=y \end{aligned}$	
Example 3: $y=2(x+7)^{3}-2 \quad f(x)=2(x+7)^{3}$ $\begin{aligned} & \begin{array}{l} x=2(y+7)^{3}+2 \\ \frac{+2}{x+2} \\ \frac{2}{2} \end{array}=\frac{2(y+7)^{3}}{2} \\ & \sqrt[3]{\frac{x+2}{2}}=\sqrt[2]{(y+7)^{8}} \quad f^{-1}(x)=\sqrt[3]{\frac{x+2}{2}}-7 \\ & \frac{\sqrt[3]{\frac{x+2}{2}}-7}{\sqrt[3]{\frac{x+2}{2}}}-7=y \end{aligned}$	
$\text { Example 4: } \begin{aligned} & y=3 \sqrt{x-3}+6 \quad f(x)=3 \sqrt{x-3} \\ & x=3 \sqrt{y-3} \\ & \frac{-6}{x-6}=\frac{2 n \sqrt{y-3}}{3} \\ &\left(\frac{x-6}{3}\right)^{2}=(\sqrt{y-3})^{x} \quad f^{-1}(x)=\left(\frac{x-6}{3}\right)^{2}+3 \\ &\left(\frac{x-6}{3}\right)^{2}=y-3 \\ &+3+3 \\ &\left(\frac{x-6}{3}\right)^{2}+3=y \end{aligned}$	

Example 5: $y=2 \sqrt[3]{x+3}-6 \quad f(x)=2 \sqrt[3]{x+3}$ $\begin{aligned} & x=2 \sqrt[3]{y+3}+6 \\ & \frac{x+6}{2}=\frac{2 \sqrt[3]{y+3}}{\left(\frac{2}{2}\right.} \\ & \left(\frac{x+6}{2}\right)^{3}=(\sqrt[3]{y+3})^{3} \\ & \left(\frac{x+6}{2}\right)^{3}=y+3 \\ & \frac{x}{-3}+f^{-1}(x)=\left(\frac{x+6}{2}\right)^{3}-3 \\ & \left(\frac{x+6}{2}\right)^{3}-3=y \end{aligned}$	-6
You Try! $\begin{aligned} & !y=4(x+8)^{2}-5 \\ & f(x)=4(x+8)^{2}-5 \\ & f^{\prime \prime}(x)=\sqrt{\frac{x+5}{4}}-8 \end{aligned}$	
You Try! $y=4 \sqrt{x+7}+5$ $\begin{aligned} & f(x)=4 \sqrt{x+7}+5 \\ & f^{-1}(x)=\left(\frac{x-5}{4}\right)^{2}-7 \end{aligned}$	

Use the horizontal line test to determine if a function has an inverse function.
If ANY horizontal line intersects your original function in ONLY ONE location, your function has an inverse which is also a function.

Which of the following functions would have inverses that are a function?

Go back and look at the inverses you found in the notes...are these functions??

