\qquad
\qquad

Find the DOMAIN for problems $1-4$. Write in interval notation.

1. $\mathrm{f}(\mathrm{x})=\frac{x}{x^{2}-9}$
2. $\mathrm{f}(\mathrm{x})=\sqrt{2-x}$
3. $f(x)=4 x+3$
4. $\mathrm{f}(\mathrm{x})=\frac{\sqrt{x+2}}{x^{2}+2 x-3}$
domain: \qquad domain: \qquad domain: \qquad domain: \qquad
5. The graph of a function f is known. Then the graph of $y=f(x-2)$ may be found by \qquad -.
6. The graph of a function is known. Then the graph of $y=f(-x)$ may be obtained by a reflection about the \qquad -axis.
7. True or False:
__ a) The graph of $y=-f(x)$ is the reflection about the x-axis of the graph of $y=f(x)$.
b) To obtain the graph of $y=f(x+2)-3$, shift the graph of $y=f(x)$ horizontally to the right 2 units and vertically down 3 units.
8. Find the function that is finally graphed after the following transformations are applied to the graph of $y=\sqrt{x}$
a) 1 . Shift up 2 units.
9. Reflect about the x-axis.
b) 1. Reflect about the x-axis
10. Shift up 2 units.
c) 1. Reflect about the y-axis.
11. Vertically stretch by 3 .
12. Shift down 2 units.
13. Shift right 4 units.
$f(x)=$ \qquad $\mathrm{f}(\mathrm{x})=$ \qquad $\mathrm{f}(\mathrm{x})=$ \qquad
14. USE GRAPH PAPER. State and graph the parent function (dotted line). Then describe the transformation of the parent function and draw the final graph (make sure I clearly see the points and connect using solid line). State the domain and range for the final graph.
a) $\mathrm{f}(\mathrm{x})=x^{3}+4$
b) $\mathrm{f}(\mathrm{x})=(x+4)^{2}$
c) $\mathrm{f}(\mathrm{x})=-\frac{1}{2}|x|$
d) $f(x)=-2(x-3)^{2}-1$
e) $f(x)=2 \sqrt{-x-1}$
15. State the domain in interval notation. Then graph (on graph paper). Then use the graph to state the range.
a) $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}3 x,-2<x \leq 1 \\ x+1, \quad x>1\end{array}\right.$
b) $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x, \quad-4 \leq x<0 \\ 1, \quad x=0 \\ 3 x, \quad x>0\end{array}\right.$
c) $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}x^{2},-2 \leq x \leq 2 \\ 2 x-1, x>2\end{array}\right.$
domain: \qquad domain: \qquad domain: \qquad
range: \qquad range: \qquad range: \qquad

16. Find $\frac{f(a+h)-f(a)}{h}$, where $h \neq 0$, for the following two functions.
a) $f(x)=2 x+3$
b) $\mathrm{f}(\mathrm{x})=x^{2}-2$
17. Evaluate the piecewise function for $\mathrm{f}(-2), \mathrm{f}(1)$, and $\mathrm{f}(4) . \quad f(x)=\left\{\begin{array}{l}x^{2}-2 x, \text { if } x \leq 1 \\ 3 x+1, \text { if } x>1\end{array}\right.$
18. The domestic postage rate for first class letters weighing 12 oz or less is 33 cents for a letter weighing 1 oz or less and 22 cents for each additional ounce (or part of an ounce). Express the postage P as a function of the weight x of a letter, with $0<\mathrm{x} \leq 12$.
19. The cost to attend a play at the theater is $\$ 120$ for a group of up to ten students. For each student over ten, the cost is $\$ 12$ for each additional student.
a. Write a piecewise function to show the cost to attend the play.
b. How much will it cost for 7 students to attend? For 20 students?
20. Using the graph below, identify the domain, range, intervals of increasing, decreasing and/or constant. Then evaluate at the given values.
a) Domain: \qquad
b) Range: \qquad
c) Increasing: \qquad
d) Decreasing: \qquad
e) Constant: \qquad
f) $f(-4)=$ \qquad
g) $f(0)=$ \qquad
h) $f(2)=$ \qquad
i) If $f(x)=2$, the $x=$ \qquad

