Math 3
Unit 2 Day 2 Notes - Exponential Growth \& Decay
Name: \qquad
Date: \qquad GROWTH Scenario: There has been a zombie invasion. The number of zombies increases by 45% each hour. If 3 zombies initially rolled into town at midnight, how many zombies will there be by 30 minutes past noon?

Step 1: Create a table for the scenario. Start with $\mathrm{x}=0$

Step 2: Write a recursive (NOW-NEXT) equation for the scenario:
Note: *The common ratio is the PERCENTAGE (written as a decimal) remaining after one time period has gone by.*

$$
\text { Next }=\text { Now } \cdot 1.45
$$

$$
\text { starts @ } 3
$$

Step 3: Write an explicit equation for the scenario: $\lambda y=a(b)^{x}$
Note: *All exponential equations are in the form $y=a * b \times$. $a=$ initial value, $b=$ common ratio*

$$
y=3(1.45)^{2}
$$

Step 4: $\mathrm{x}=$ the amount of time (or time periods) that have gone by. Choose/substitute an x in order to solve the question.

$$
y=3(1.45)^{12.8}
$$

Answer:

$$
312 \text { zombies }
$$

DECAY scenario: The zombie invasion is wiping out the population. The number of normal people are diminishing fast. Each day that goes by 48% of the living population is lost. If the population of North decimal Carolina started out at 9.752 million, how many people will be left after one week?

$$
4 a \quad b=b=.48=.52
$$

Step 1: Create a table for the scenario. Start with $x=0$

Step 2: Write a recursive (NOW-NEXT) equation for the scenario:
Note: *The common ratio is the PERCENTAGE (written as a decimal) remaining after one time period has gone by.* start © 9.752

$$
\text { Next }=\text { Now •. } 52
$$

Step 3: Write an explicit equation for the scenario: $\quad \lambda \quad y=a(b)^{x}$
Note: *All exponential equations are in the form $y=a^{*} b^{x} . a=$ initial value, $b=$ common ratio*

$$
y=9.752(.52)^{x}
$$

Step 4: $\mathrm{x}=$ the amount of time (or time periods) that have gone by. Choose/substitute an x in order to solve the question. one week $\downarrow=9.752(.52)^{7}$
\qquad

Note:

- For growth scenarios \rightarrow the common ratio is greater than $1 . \rightarrow$ Can be found by doing $100 \%+(\%$ of increase) then write it as a decimal.
- For decay scenarios \rightarrow the common ratio is less than $1 . \rightarrow$ Can be written as 100% - (\% of decrease) then write it as a decimal.

Special Circumstances

Compound Interest Scenario: Mary places $\$ 5000$ into a savings account that earns 3.1% interest compounded quarterly. How much money will Mary have in her account after 15 years?
*NOTE: Compound Interest is a special type of GROWTH scenario. To calculate the common ratio: $1+$ (\% interest written as a decimal / \# of times compounded per year)
Additionally, x (amount of time) must be multiplied by the \# of times compounded per year.
Therefore, your final equation looks like:

$$
\begin{aligned}
& \text { looks like: } \\
& y=a\left(1+(r / n)^{n x}\right.
\end{aligned} \rightarrow y=a\left(l+\left(\frac{r}{n}\right)\right)^{n x}
$$

where $a=$ intial amount, $r=$ interest rate as a decimal, $n=$ number of times compounded per year, and $x=$ amount of time
Annually = \quad Quarterly $=4 \quad$ Daily $=365$
Semi-Annually = $2 \quad$ Weekly = 52
$a=5000$
$r=3.1 \%_{0} \rightarrow .031$
$n=4$
$x=15$ yrs.
Answer: \qquad

Half-Life Scenario: Actinium-226 has a half-life of 29 hours. If 100 mg of Actinium-226 disintegrates of a period of 72.5 hours, how many milligrams will remain? $\quad b=\frac{1}{2}$ or .5 *NOTE: Half-Life is a special DECAY scenario where your common ratio is $1 / 2$ (because there is $1 / 2$ remaining). X represents the NUMBER OF HALF-LIFE TIME PERIODS. Be careful with this!

Answer: \qquad

