Math 3 Unit 2 Day 3 Notes – Intro to Exponential and Logarithmic Functions

1. Exponential Function: A function of the form $y = a \cdot b^x$, where $a \neq 0, b > 0$, and $b \neq 1$. **Exponential Functions are functions whose equations contain a variable in the exponent!!

Exponential Functions have the following characteristics:

- The functions is continuous and one-to-one
- The domain is the set of all real numbers
- The x-axis is an asymptote of the graph.
- The range is the set of all positive numbers if a > 0 and all negative numbers if a < 0.

Name:

Date:

- The graph contains the point (0, *a*). That is the y-intercept is *a*.
- The graphs of $y = ab^x$ and $y = a(\frac{1}{b})^x$ are reflections across the y-axis.

Examples:	NOT Examples:
$f(x) = 2^x$	$f(x) = x^2$
$g(x) = 10^x$	$g(x) = 1^x$
$h(x) = 3^{x+1}$	$h(x) = x^x$

- **2.** Logarithmic Function: The function $x = log_b y$, where b > 0 and $b \neq 1$, is called a logarithmic function. This function is the inverse of the exponential function $y = b^x$ and has the following characteristics:
 - The function is continuous and one-to-one.
 - The domain is the set of all positive real numbers.
 - The y-axis is an asymptote of the graph.
 - The range is the set of all real numbers.
 - The graph contains the point (1, 0). That is the x-intercept is 1.

Logarithm: In general, the inverse of $y = b^x$ is $x = b^y$. In $x = b^y$, y is called the *logarithm* of x. It is usually written as $y = log_b x$ and is read "*y* equals log base b of x."

**The inverse function of the exponential functions with base b, is called the logarithmic function with base b.

3. <u>Rewriting in both forms.</u>

Example 1) Rewrite logarithmic each equation in its equivalent exponential form.

Example 2) Rewrite each exponential equation in its equivalent logarithmic form.

a.	$12^2 = x$	log = 2	d. $b^3 = 8$	ام _ل 8 = 3
b.	$2^5 = x$	log2 x = 5	e. $b^3 = 27$	log 27 = 3
c.	$8^3 = c$	$\log_{g} c = 3$	f. $4^{y} = 9$	l., 9 = y

4. <u>**Basic and Inverse Log Properties-**</u> Because logs are exponents, they have properties that can be verified using the properties of exponents.

Basic Properties:	Inverse Properties: (Cancel with the same		
base!)			
1. $\log_b b = 1$ because $b^1 = b$	1. $\log_D h^{(x)} = x$		
C			
2. $\log_b 1 = 0$ because $b^0 = 1$	2. $b^{2} \in X$		

Example 3) Evaluate using the log properties.

a.
$$\log_7 7 = 1$$
e. $\log_9 9 = 1$

b. $\log_5 1 = 0$
f. $\log_8 1 = 0$

c. $\log_4 4^5 = 5$
g. $6^{\log_6 9} = 9$

d. $\log_7 7^8 = 9$
h. $3^{\log_3 17} = 17$

5. <u>Common Logarithm</u>: Base 10 Logarithm, usually written without the subscript 10. $\log_{10} x = \log x$, x > 0. Most calculators have a LOG key for evaluating common logarithms. The calculator is programmed in base 10.

4 decimal places

Example 4) Find the value of each log. Round to the nearest ten-thousandths.

a.	log 81,000	c. log 0.35
	≈ 4.90 <i>8</i> 5	~ -0.4559
b.	log 6	d. log 0.0027
	≈ 0.77 %2	2 -2.5686

6. <u>Evaluating Logs using the Change of Base Formula</u>

For all positive numbers, a, b, and n, where $a \neq 1$ and $b \neq 1$,

$$\log_a n = \frac{\log_b n}{\log_b a}$$
 Example: $\log_5 12 = \frac{\log_{10} 12}{\log_{10} 5}$

This formula allows us to evaluate a logarithmic expression of any base by translating the expression into one that involves common logarithms.

Example 5) Evaluate each logarithm

a. $\log_3 18 = \frac{\log_3 (18)}{\log_3 3} \approx 2.6309$ b. $\log_4 25 = \frac{\log_3 25}{\log_3 4} \approx 2.3219$ c. $\log_2 16 = \frac{\log_3 16}{\log_3 2} = 4$ d. $\log_{25} 5 = \frac{\log_3 5}{\log_3 25} = \frac{1}{2}$ e. $\log_2 1024 = \frac{\log_3 (024)}{\log_3 2} = 10$ f. $\log_5 125 = \frac{\log_3 125}{\log_3 5} = 3$

7. Solving for variables with exponentials and logs. ****MAY HAVE TO REWRITE AND APPLY PROPERTIES OR CHANGE OF BASE FORMULA!!!

Example 6) Solve for the variable:	Change	to exponential	form
a. $\log_3 243 = y$	b. $\log_9 x = -3$		c. $\log_8 n = \frac{4}{3}$
$\frac{10\gamma 243}{10\gamma 3} = \gamma$	$9^{-3} = x$		8 ⁽³⁾ = n
<mark>ک = ۲</mark> Example 7) Evaluate:	$\frac{1}{\sqrt{3}} = x$		n = 16
a $\log_2 8^{\text{H}} = r$	9 ⁻	h $\log_{2} q^{2} = v$	
X=4	729 = 1	Y=2	

Example 8) Solve each log equation. Be sure to check your answers!

a.
$$\log_3(3x-6) = \log_3(2x+1)$$

b. $\log_6(3x-1) = \log_6(2x+4)$

c. $\log_8(x^2 - 14) = \log_8(5x)$

d. $\log_4 x^2 = \log_4(4x - 3)$

e. $\log_5(x - 7) = 2$

 $f. \log_2(4x + 1) = 5$