\qquad

Unit 2 Test Review

Date \qquad

Day 1 \& 2 Things to Know!

- Solve a right triangle, SOH САН TOA, $\sin \theta=\frac{o p p}{h y p}, \cos \theta=\frac{a d j}{h y p}, \tan \theta=\frac{o p p}{a d j}$,

$$
\csc \theta=\frac{h y p}{o p p}, \sec \theta=\frac{h y p}{a d j}, \cot \theta=\frac{a d j}{o p p}
$$

- Use SOH CAH TOA to solve RIGHT triangles. (Problems that say angle of elevation/depression)

Practice:

1.

2.

3.

4.

5. A guy wire from the top of the transmission tower at WJBC forms a 75° angle with the ground at a 55 -foot distance from the base of the tower. How tall is the tower?
6. The base of a ladder is 6 ft from the building, and the angle formed by the ladder and the ground is 73°. How high up the building does the ladder touch?

Day 4 (Parts 1 \& 2) Things to Know!

- Law of Sines - $\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$. (Formula will be on test)
- Use if you have ASA or AAS (that is not a right triangle), then you will only produce 1 triangle
- Use if you have SSA (that is not a right triangle), then you could produce 0,1 or 2 triangles. If $\sin A>1$, then no solution. If $\sin \mathrm{A}<1$, consider 2 triangles!!!!

Practice:

7. Two markers A and B are on the same side of a canyon rim 56 ft apart. A third marker, C , located across the rim, is positioned so that $\triangle B A C=72^{\circ}$ and $\Delta A B C=53^{\circ}$. Find the distance between C and A .
8. A civil engineer wants to determine the distances from points A and B to an inaccessible point C, as shown. From direct measurements, the engineer knows that $\mathrm{AB}=25 \mathrm{~m}, \angle \mathrm{~A}=110^{\circ}$, and $\angle \mathrm{B}=20^{\circ}$. Find $A C$ and $B C$.

Day 5 Things to Know!

- Law of Cosines - $a^{2}=b^{2}+c^{2}-2 b c \cos A, b^{2}=a^{2}+c^{2}-2 a c \cos B, c^{2}=a^{2}+b^{2}-2 a b \cos C$ (formulas will be given on test)
- Use Law of Cosines if you have SAS or SSS.

Practice:

9. Find the measure of the largest angle in the triangle below.

20
10. In order to determine the distance between two points A and B on opposite sides of a lake, a surveyor chooses a point C that is 900 ft from A and 225 ft from B . If the measure of the angle at C is 70°, find the distance between A and B.
11. A car travels along a straight road, heading east for 1 hour, then changing to northeast direction at 1350 onto another road, traveling for 30 min . If the car has maintained a constant speed of 40 mph , how far is it from its starting point?
12. Suppose you want to fence a triangular lot. If two sides measure 84 feet and 78 feet and the angle between the two sides is 102°, what is the length of the fence to the nearest foot?

Day 3 (and part of Day 4 Part 2) Things to Know!

Area of a Triangle:

- The area of a triangle with sides of lengths a and b and with included angle θ is $A=\frac{1}{2} a b \sin \theta$.

Practice:

13. Find the area of a triangle whose side lengths are 8 and 14 and has an included angle of 35°.
14. Find the area of a triangle with side lengths 5, 6 and 8.

Mixing it all up...
15. Solve for x

18. Find the area of the $\triangle P Q R$

21. Find the length of side $A B$

24. Find the area of $\triangle A B C$.

16. Solve for x

19. Solve for x

22. Solve for x

23. Solve for x

26. Solve for x

27. From the top of a 120 foot tower, an air traffic controller observes an airplane on the runway at an angle of depression of 19°. How far from the base of the tower is the airplane?
28. Find the angle of elevation of the sun when a 12.5 meter tall telephone pole casts an 18 meter long shadow.
29. If $\tan \theta=8 / 17$, find the other 5 trig ratios
30. If $\csc \theta=\frac{\sqrt{13}}{4}$, find the other 5 trig ratios
31. If $\cos (x)=0.42$, what is the measure of angle x ?
32. Evaluate $\tan (45)$
33. Find the area of triangle $A B C$ if angle A is 30 degrees, $A B=12$ and $A C=14$.
34. In triangle $A B C$, if $a=6, b=10$ and $\angle A=42$, how many triangles can be formed?
35. From a point A on the ground, the angle of elevation to the top of a tall building is 24.1°. From a point B , which is 600 feet closer to the building, the angle of elevation is measured to be 30.2°. Find the height of the building.

