\qquad
Unit 2A Day 1 Notes - Transformations w/ Fred Functions
Date:
-
To the right is a graph of a "Fred" function. We can use Fred functions to explore transformations in the coordinate plane.
I. Let's review briefly.

1. a. Explain what a function is in your own words.

b. Using the graph, how do we know that Fred is a function? vertical line test
2. a. Explain what we mean by the term domain.

$$
x \text {-values of the function }
$$

b. Using the graph, what is the domain of Fred?

$$
-1 \leq x \leq 4
$$

3. a. Explain what we mean by the term range.
y-values of the function
b. Using the graph, what is the range of Fred?

$$
-2 \leq y \leq 1
$$

4. Let's explore the points on Fred.
a. How many points lie on Fred?

Can you list them all? Yes

$$
4 \text { points (5 point) }
$$

b. What are the key points that would help us graph Fred?

$$
(-1,1)(1,-1)(2,-1) \quad(4,-2) \quad(0,0)
$$

We are going to call these key points "characteristic" points. It is important when graphing a function that you are able to identify these characteristic points.
c. Use the graph of graph to evaluate the following.
$\begin{gathered}x \\ F(1)\end{gathered}=\begin{array}{r}y \\ -1\end{array}$
$\begin{gathered}x \\ F(-1)\end{gathered}=\underbrace{y}_{1}$

x
$F(4-y$

$\begin{array}{cc}x & y \\ F(5) & =\xrightarrow[\text { modefinod }]{ }\end{array}$
II. Remember that $\mathrm{F}(\mathrm{x})$ is another name for the y -values.

Therefore the equation of Fred is $\mathbf{y}=\mathrm{F}(\mathrm{x})$.

x	$F(x)$
-1	1
1	-1
2	-1
4	-2

1. Why did we choose those x-values to put in the table?

$$
x \text {-values from our cherracteristic points }
$$

Now let's try graphing Freddie Jr.: $y=F(x)+4$. Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.

2. What type of transformation maps Fred, $\mathrm{F}(\mathrm{x})$, to Freddie Jr., $\mathrm{F}(\mathrm{x})+4$? (Be specific.)

$$
\text { translated the function } 4 \text { units up }
$$

3. How did this transformation affect the x -values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
x \text {-values did not clennge }
$$

4. How did this transformation affect the y-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
\begin{array}{lr}
\text { Ir.) } \\
y \text {-values increased by } 4
\end{array}
$$

5. In $\mathrm{y}=\mathrm{F}(\mathrm{x})+4$, how did the " +4 " affect the graph of Fred? Did it affect the domain or the range?

$$
\text { moved the sroph } 4 \text { units up. Range }
$$

III. Suppose Freddie Jr's equation is: $\mathbf{y}=\mathrm{F}(\mathrm{x}) \mathbf{- 3}$. Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.

1. What type of transformation maps Fred, $\mathrm{F}(\mathrm{x})$, to Freddie Jr., $\mathrm{F}(\mathrm{x})-3$? Be specific.

$$
\text { translate down } 3 \text { units }
$$

2. How did this transformation affect the x -values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
x \text {-values did not change }
$$

3. How did this transformation affect the y-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
\text { y-values decreased by } 3
$$

4. In $\mathrm{y}=\mathrm{F}(\mathrm{x})-3$, how did the " -3 " affect the graph of Fred? Did it affect the domain or the range?
moved
the graph down 3 units Rare
IV. Checkpoint: Using the understanding you have gained so far, describe the affect to Fred for the following functions.

Equation	Effect to Fred's graph
Example: $\mathrm{y}=\mathrm{F}(\mathrm{x})+18$	Translate up 18 units
1. $\mathrm{y}=\mathrm{F}(\mathrm{x})-100$	Translate down 100 units
2. $\mathrm{y}=\mathrm{F}(\mathrm{x})+73$	Translate up 73 units
3. $\mathrm{y}=\mathrm{F}(\mathrm{x})+32$	Translate up 32 units
4. $\mathrm{y}=\mathrm{F}(\mathrm{x})-521$	Translate down 521 units

V. Suppose Freddie Jr's equation is: $\mathrm{y}=\mathrm{F}(\mathrm{x}+4)$

1. Complete the table.

\mathbf{x}	$\mathbf{x + 4}$	\mathbf{y}
-5	-1	1
-3	1	-1
-2	2	-1
0	4	-2

(Hint: Since, $x+4=-1$, subtract 4 from both sides of the equation, and $x=-5$. Use a similar method to find the missing x values.)
2. On the coordinate plane above, graph the 4 ordered pairs (x , y). The first point is $(-5,1)$.
3. What type of transformation maps Fred, F(x), to Freddie Jr., $F(x+4) ?(B e$ specific.) translate left 4 units
4. How did this transformation affect the x -values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
x \text {-values decreased by } 4
$$

5. How did this transformation affect the y-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
y \text {-values did not change }
$$

6. In $y=F(x+4)$, how did the " +4 " affect the graph of Fred? Did it affect the domain or the range? moved the gruph left 4 units Domain
VI. Suppose Freddie Jr's equation is: $\mathbf{y}=\mathrm{F}(\mathrm{x}-3)$. Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.
7. Complete the table.

8. On the coordinate plane above, graph the 4 ordered pairs (x, y).
[Hint: The $1^{\text {st }}$ point should be $(2,1)$.]

9. What type of transformation maps Fred, $\mathrm{F}(\mathrm{x})$, to Freddie Jr., $\mathrm{F}(\mathrm{x}-3)$? (Be specific.)

$$
\text { translates right } 3 \text { units }
$$

4. How did this transformation affect the x -values?
(Hint: Compare the characteristic points of Fred and Freddie Jr.)
x-values increased by 3
5. How did this transformation affect the y -values?
(Hint: Compare the characteristic points of Fred and Freddie Jr.)

$$
y \text {-values did not cherie }
$$

6. In $y=F(x-3)$, how did the " -3 " affect the graph of Fred? Did it affect the domain or the range? moved the graph right 3 units Domain
VII. Checkpoint: Using the understanding you have gained so far, describe the effect to Fred for the following functions.
inside parentheses \rightarrow left or right

VIII. Checkpoint: Using the understanding you have gained so far, write the equation that would have the following effect on Fred's graph.

IX. Now let's look at a new function.

Its notation is $\mathrm{H}(\mathrm{x})$, and we will call it Harry. Use Harry to demonstrate what you have learned so far about the transformations of functions.

1. What are Harry's characteristic points?
$(-1,-5)(0,0)(2,-3)(3,3)$
2. Describe the effect on Harry's graph for each of the following.

a. $H(x-2)$
right 2 units
b. $H(x)+7$
up 7 units
c. $H(x+2)-3$ left 2 units down 3 units
3. Use your answers to questions 1 and 2 to help you sketch each graph without using a table.
a. $y=H(x-2)$

$$
\text { b. } \mathrm{y}=\mathrm{H}(\mathrm{x})+7
$$

c. $y=H(x+2)-3$

