Math 2 Unit 2A Day 1 Notes – Transformations w/ Fred Functions

To the right is a graph of a **"Fred" function**. We can use Fred functions to explore transformations in the coordinate plane.

- I. Let's review briefly.
- 1. a. Explain what a function is in your own words.

set of points where one x-value socs w/ one y-value.

- b. Using the graph, how do we know that Fred is a function?
- 2. a. Explain what we mean by the term domain.

x-values of the function

b. Using the graph, what is the domain of Fred?

-1 4 × 4 4

3. a. Explain what we mean by the term range.

y-values of the function

b. Using the graph, what is the range of Fred?

-2 5 y 5 1

- 4. Let's explore the points on Fred.
 - a. How many points lie on Fred? ۲ هم: ۲۰۰۰ ۲۵ (۲ ملی: ۲۰۰۰ م

Can you list them all? Yes

b. What are the key points that would help us graph Fred?

We are going to call these key points **"characteristic" points**. It is important when graphing a function that you are able to identify these characteristic points.

c. Use the graph of graph to evaluate the following.

II. Remember that F(x) is another name for the y-values.

Therefore the equation of Fred is $\mathbf{y} = \mathbf{F}(\mathbf{x})$.

х	F(x)
-1	-
1	-1
2	-1
4	-2

ſ															
t															
ŀ	 					_			_		-	-	_	-	
I															
ſ															
ŀ								C			4				
ŀ									CX	1	רן				
I											l				
ſ				C	3										
ł											-	-		-	
							<u> </u>				-		_		Þ
٦															

1. Why did we choose those x-values to put in the table?

Now let's try graphing Freddie Jr.: y = F(x) + 4. Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.

2. What type of transformation maps Fred, F(x), to Freddie Jr., F(x) + 4? (Be specific.)

3. How did this transformation affect the x-values? *(Hint: Compare the characteristic points of Fred and Freddie Jr.)*

4. How did this transformation affect the y-values? *(Hint: Compare the characteristic points of Fred and Freddie Jr.)*

5. In y = F(x) + 4, how did the "+4" affect the graph of Fred? Did it affect the domain or the range?

III. Suppose Freddie Jr's equation is: y = F(x) - 3. Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.

1. What type of transformation maps Fred, F(x), to Freddie Jr., F(x) - 3? Be specific.

franslate down 3 units

- 2. How did this transformation affect the x-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)
- 3. How did this transformation affect the y-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)
- 4. In y = F(x) 3, how did the "- 3" affect the graph of Fred? Did it affect the domain or the range?

moved the graph down 3 units Range

IV. Checkpoint: Using the understanding you have gained so far, describe the affect to Fred for the following functions.

Equation	Effect to Fred's graph
Example: $y=F(x) + 18$	Translate up 18 units
1. $y = F(x) - 100$	Translate down 100 units
2. $y = F(x) + 73$	Translate up 73 units
3. $y = F(x) + 32$	Translate up 32 units
4. $y = F(x) - 521$	Translate down Sal units

- **V.** Suppose Freddie Jr's equation is: y = F(x + 4).
- 1. Complete the table.

х	x + 4	у
-5	-1	1
- 3	1	-1
-2	2	-1
0	4	-2

(*Hint*: Since, x + 4 = -1, subtract 4 from both sides of the equation, and x = -5. Use a similar method to find the missing x values.)

- On the coordinate plane above, graph the 4 ordered pairs (x, y). The first point is (-5, 1).
- 3. What type of transformation maps Fred, F(x), to Freddie Jr., F(x + 4)? (Be specific.)
 translate left 4 units
- 4. How did this transformation affect the x-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)
 x values decreased by 4
- *5.* How did this transformation affect the y-values? *(Hint: Compare the characteristic points of Fred and Freddie Jr.)*

y-values did not change

- 6. In y = F(x + 4), how did the "+4" affect the graph of Fred? Did it affect the domain or the range? moved the sraph left 4 units Domain
- **VI.** Suppose Freddie Jr's equation is: y = F(x 3). Complete the table below for this new function and then graph Freddie Jr. on the coordinate plane above.
- 1. Complete the table.

- On the coordinate plane above, graph the 4 ordered pairs (x, y).
 [*Hint: The 1st point should be (2, 1).*]
- 3. What type of transformation maps Fred, F(x), to Freddie Jr., F(x 3)? (Be specific.) +rans lates right 3 units
- 4. How did this transformation affect the x-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.) x-valves increased by 3
- 5. How did this transformation affect the y-values? (Hint: Compare the characteristic points of Fred and Freddie Jr.)
- 6. In y = F(x 3), how did the "-3" affect the graph of Fred? Did it affect the domain or the range? moved the graph right 3 units Domain

VII. Checkpoint: Using the understanding you have gained so far, describe the effect to Fred for the following functions.

inside	parenthesas - a left or right				
Equation	Effect to Fred's graph				
Example: $y=F(x+18)$	Translate left 18 units				
1. $y = F(x - 10)$	Translate risut 10 units				
2. $y = F(x) + 7$	Translate up 7 units				
3. $y = F(x + 48)$	Translate left 48 units				
4. $y = F(x) - 22$	Translate down 22 units				
5. $y = F(x + 30) + 18$	Translate left 30 + up 18 units				
outside	parentheses -> up or down				

VIII. Checkpoint: Using the understanding you have gained so far, write the equation that would have the following effect on Fred's graph.

	inside parentmescs = 1	eer of its wa
	Equation	Effect to Fred's graph
Example:	y=F(x+8)	Translate left 8 units
1.	y= f(x) + 29	Translate up 29 units
2.	y= f(x-7)	Translate right 7
3.	y = F(x + 45)	Translate left 45
4.	y = F(x + 5) + 14	Translate left 5 and up 14
5.	$y = Fcx - \omega) - \lambda$	Translate down 2 and right 6

outside parentmeses a up or down

- IX. Now let's look at a new function.Its notation is H(x), and we will call it Harry.Use Harry to demonstrate what you have learned so far about the transformations of functions.
- 1. What are Harry's characteristic points?

(-1, -5) (0, 0) (2, -3) (3, 3)

- 2. Describe the effect on Harry's graph for each of the following.
 - a. H(x-2) <u>right 2 units</u>
 - b. H(x) + 7 <u>vp 7 units</u>
 - c. H(x+2)-3 left 2 units + down 3 units
- 3. Use your answers to questions 1 and 2 to help you sketch each graph *without using a table*.
 - a. y = H(x 2)

c. y = H(x+2) - 3

b. y = H(x) + 7

Translation Sum Up: $F(x + \#) \rightarrow translate \ LEFT(+)$ $F(x - \#) \rightarrow translate \ RIGHT(-)$ $F(x) + \# \rightarrow translate \ UP(+)$

Fix) - # -> translate DOWN (-)

