\qquad Ley

Using the graphing calculator to find the real zeros.
Steps:

1. If necessary, turn the quadratic equation into a quadratic function by setting it equal to y.
2. Type the equation into $Y 1$; Set $Y 2=0$
3. Graph the function then use the CALC feature (2nd trace, Option 5: INTERSECT) to find the locations of where the function crosses the x -axis.

Examples: Find the real zeros for the following.
8. $x^{2}+6 x+4=0$
$x=-5.24 \quad x=-0.76$
9. $0=4 x^{2}+3 x-1$
$x=-1 \quad x=0.25$
10. $3 x^{2}+5 x-1=8$
$-8-18$
$3 x^{2}+5 x-9=0$
$x=-2.76 \quad x=1.09$
Simplifying Radicals \& Solving by Square Root Property

Case 1: PERFECT SQUARES - Take the square root of the number

> Steps for
> Simplifying
> Radicals

Case 2: Non - Perfect Squares - Use calculator
Steps for Calculator:
Goto $\mathrm{Y}=$
Type \# under the radical divided by x^{2}
Look for smallest \#, that is not a decimal, in the y - column.
Then write: \boldsymbol{x} - value $\sqrt{y-\text { value }}$

	Simplifying R				
1)	$\sqrt{49}$ ± 7	2)	$\begin{aligned} & \sqrt{225} \\ \pm & 15 \end{aligned}$	3)	$\begin{aligned} & \sqrt{\mathbf{1 4 4}} \\ \pm & 12 \end{aligned}$
4)	$\begin{aligned} \sqrt{\frac{4}{9}} & =\frac{\sqrt{4}}{\sqrt{9}} \\ & = \pm \frac{2}{3} \end{aligned}$	5)	$\begin{aligned} \sqrt{\frac{1}{81}} & =\frac{\sqrt{1}}{\sqrt{81}} \\ & = \pm \frac{1}{9} \end{aligned}$	6)	$\begin{aligned} \sqrt{\frac{36}{121}} & =\frac{\sqrt{36}}{\sqrt{121}} \\ & = \pm \frac{6}{11} \end{aligned}$
7)	$\begin{array}{r} \quad-\sqrt{112} \\ \pm 4 \sqrt{7} \end{array}$	8)	$\begin{array}{r} \sqrt{245} \\ \pm \quad 7 \sqrt{5} \end{array}$	9)	$\begin{aligned} & 5 \sqrt{72} \\ & 30 \sqrt{2} \end{aligned}$

10)	$\begin{aligned} & \int_{9 \times 3 \sqrt{5}}^{9 \sqrt{45}} \\ & 27 \sqrt{5} \end{aligned}$	11)	$\begin{array}{r} \sqrt{250} \\ \pm 5 \sqrt{10} \end{array}$	12)	$\begin{aligned} & 3 \times 17 \sqrt{2} \\ & 51 \sqrt{2} \\ & \end{aligned}$

		Quadratic Equations of the form: $a x^{2} \pm c=0 \quad$ (has no middle term, bx) can be solved using the Square Root Property: If $x^{2}=n$, then $x= \pm \sqrt{n}$
Steps for Solving Quadratics by Square Root Property	1)	ISOLATE x^{2}
	2)	Take the SQUARE ROOT of both sides
3)	Simplify the radical (if needed). Please " \pm " to indicate both answers.	

Examples: Solving Quadratics by Square Root Property					
1)	$\begin{gathered} x^{2}-64=0 \\ +64 \quad+64 \\ \hline \sqrt{x^{x}}=\sqrt{64} \\ x= \pm 8 \end{gathered}$	2)	$\begin{gathered} 7 x^{2}+8=15 \\ -88 \\ \hline \frac{8 x^{2}}{x}=\frac{7}{7} \\ \sqrt{x^{x}}=\sqrt{1} \\ x= \pm 1 \end{gathered}$	3)	$\begin{gathered} 81 x^{2}+5=\mathbf{2 1} \\ -5=5 \\ \hline \frac{71 x^{2}}{81}=\frac{16}{81} \\ \sqrt{x^{x}}=\sqrt{\frac{16}{81}}=\frac{\sqrt{16}}{\sqrt{81}} \\ x= \pm \frac{4}{9} \end{gathered}$
4)	$\begin{gathered} 8 x^{2}+1=17 \\ -1=-1 \\ \hline \frac{8 x^{2}}{d}=\frac{16}{8} \\ \sqrt{x^{2}}=\sqrt{2} \\ x= \pm \sqrt{2} \end{gathered}$	5)	$\begin{array}{r} 2 x^{2}-9=55 \\ \sqrt{9}+9 \end{array} \begin{gathered} \frac{2 x^{2}}{2}=\frac{64}{2} \\ \sqrt{x^{x}}=\sqrt{32} \\ x= \pm 4 \sqrt{2} \end{gathered}$	6)	$\begin{gathered} 9 x^{2}+3 x=111 \\ \frac{13}{3}=3 \\ \hline \frac{9 x^{2}}{}=\frac{108}{9} \\ \sqrt{x^{x}}=\sqrt{12} \\ x= \pm 2 \sqrt{3} \end{gathered}$
	$\begin{aligned} & \frac{4}{4}-3 x^{2}=-77 \\ &-4 \end{aligned} \begin{aligned} \frac{33 x^{2}}{-2} & =\frac{-81}{-3} \\ \sqrt{x^{2}} & =\sqrt{27} \\ x & = \pm 3 \sqrt{3} \end{aligned}$	8)	$\begin{aligned} & 5 x^{2}+10=310 \\ & x= \pm 2 \sqrt{15} \end{aligned}$	9)	$\frac{-1}{2} x^{2}+1=-39$ $x= \pm 4 \sqrt{5}$

