Math 3 Unit 2B Day 2 Notes – Solving Quadratics by Graphing

Main Ideas/Questions	Notes/Examples		
Solutions to a QUADRATIC EQUATION	 The solutions to a que function intersects th The solutions are also or <u>×</u>-<u>intercep</u> 	adratic equation are the p $x = \underline{X} = \underline{x i S}$. preferred to as $\underline{z cros}$ ts = (y - column)	points at which the , <u>roots</u> will have a Zero)
Numler of Solutions	2 SOLUTIONS		NO REAL SOLUTIONS
SOLVE BY GRAPHING Solutions: 1. <u>x=1 x= -3</u>	Directions: Find the solu 1. $f(x) = x^2 + 2x - 3$ Graphing Cale: i). Go to $y =$ a). Pot quadratic in γ_1 b). Hit and Graph	Yellow Calc: D. Hit table 2). Put quadratic in y= 3). Hit Euter until you sec the table.	equation by graphing.
2. <u>X=-5</u> <u>X=-5</u>	4). In table: look for Zero in y-colum	4), look for Zero in y-column	
3. <u>X=4 X= λ</u>	2. $f(x) = -x^2 - 10x - 25$ x = -5 (mult. 2)		
	3. $f(x) = x^2 - 6x + 8$ x = 4 $x = 3$		<i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i> <i>y</i>

Name_____

Using the graphing calculator to find the real zeros.

Steps:

- **1.** If necessary, turn the quadratic equation into a quadratic function by setting it equal to y.
- **2.** Type the equation into Y1; Set Y2=0
- **3.** Graph the function then use the CALC feature (2nd trace, Option 5: INTERSECT) to find the locations of where the function crosses the x-axis.

Examples: Find the real zeros for the following.

8. $x^2 + 6x + 4 = 0$	9. $0 = 4x^2 + 3x - 1$	10. $3x^2 + 5x - 1 = 8$
x= -5. 24, x= -0.76	X=-1 X=0.72	$\frac{-87}{4}$

x= -2.76 x= 1.09

Simplifying Radicals & Solving by Square Root Property

	Case 1: PERFECT SQUARES – Take the square root of the number
Steps for	Case 2: Non – Perfect Squares – Use calculator
Simplifying Radicals	Steps for Calculator: Go to Y = Type # under the radical divided by x^2 Look for smallest #, that is not a decimal, in the y – column. Then write: $x - value\sqrt{y - value}$

Examples: Simplifying Radicals					
1)	$\sqrt{49}$	2)	$\sqrt{225}$	3)	$\sqrt{144}$
	± 7		± 15		± 12
	<u> </u>				
4)	$\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{4}}$	5)	$\sqrt{\frac{1}{81}} = \frac{1}{\sqrt{91}}$	6)	$\sqrt{\frac{36}{121}} = \frac{\sqrt{36}}{\sqrt{121}}$
	- 3		$= \pm \frac{1}{9}$		= ± <u>6</u>
7)	$\sqrt{112}$	8)	$\sqrt{245}$	9)	$5\sqrt{72}$
	+ 4 7		+ 7 5		5 × 6 J 2
					30 5
					5- V &

10) 9\sqrt{45}	11) √250	12) 3√578
		3× 17 51
9×355	±5510	รเโล
27.5		

Steps for Solving Quadratics by Square Root Property		Quadratic Equations of the form: $ax^2 \pm c = 0$ (has no middle term, bx) can be solved using the Square Root Property: If $x^2 = n$, then $x = \pm \sqrt{n}$
	1)	ISOLATE x^2
	2)	Take the SQUARE ROOT of both sides
	3)	Simplify the radical (if needed). Please " \pm " to indicate both answers.

Examples: Solving Quadratics by Squ	uare Root Property	
1) $\begin{array}{c} x^{2} - 64 = 0 \\ + 64 + 64 \\ \hline \\ \hline \\ x^{*} = \sqrt{64} \\ x = \frac{1}{2} \\ x^{*} = \frac{1}{2} \\ x = \frac$	2) $7x^{2} + 8 = 15$ $7x^{2} + 8 = 15$ $7x^{2} - 8$ $7x^{2} = 7$ $7x^{2} = 7$ $7x^{2} = 5$ $7x^{2} = 5$ $7x^{2} = 5$	3) $\frac{81x^{2} + 5 = 21}{\frac{-5}{-5}}$ $\frac{91x^{2} = \frac{16}{91}}{\sqrt{x}} = \frac{16}{\sqrt{91}}$ $\frac{1}{\sqrt{x}} = \sqrt{\frac{16}{91}} = \sqrt{\frac{16}{\sqrt{91}}}$ $x = \pm \frac{4}{91}$
4) $8x^{2} + 1 = 17$ -1 $8x^{2} + 1 = 17$ -1 $8x^{2} = \frac{16}{8}$ $5x^{2} = 5x$ $x = \pm 5x$	5) $\frac{2x^2 - 9}{\sqrt{4} + 9} = 55}{\sqrt{4} + 9}$ $\frac{1}{\sqrt{2}} = \frac{64}{2}$ $\sqrt{x^2} = \sqrt{32}$ $x = \pm 4\sqrt{2}$	6) $9x^{2} + 3 = 111$ $73 - 3$ $9x^{2} = 108$ $9x^{2} = 108$ $7x^{2} = 108$ $9x^{2} = 112$ $7x^{2} = 10$
7) $4 - 3x^{2} = -77$ $74 - 4$ $\frac{13x^{2}}{-3} = -81$ $7x^{2} = 527$ $x = \pm 353$	8) $5x^2 + 10 = 310$ $\chi = \frac{1}{2} \sqrt{15}$	9) $\frac{-1}{2}x^2 + 1 = -39$ $\chi = \pm 4\sqrt{5}$