\qquad

Unit 3 Day 1 Notes - Angle \& Radian Measure

Date \qquad

Units for Measuring Angles

- Degrees: A circle is divided into 360 equal degrees, so that a right angle is 90°

- Radians: One radian is the angle made at the center of a circle by an arc whose length is equal to the radius of the circle.

-The circumference of a circle with radius 1 is \qquad so a complete revolution has made \qquad radians (or approximately 6.28 radians as seen in the above figure).
-A straight angle (or \qquad of a circle) has measure \qquad radians.

Converting Radians and Degrees:

$$
\begin{aligned}
& \text { Radians }=\left(\frac{\pi}{180^{\circ}}\right) \times \text { degrees } \\
& \text { Degrees }=\left(\frac{180^{\circ}}{\pi}\right) \times \text { radians }
\end{aligned}
$$

Examples:

1. Express 60° in radians
2. Express $\frac{\pi}{6}$ rad in degrees

On Your Own:
\#1-8, change the given angle to radians.

1) 315°
2) -60°
3) 212°
4) -168°
5) 12.5°
6) -310°
7) 600°
8) -720°
\#9-16, change the given angle to degrees.
9) $\frac{3 \pi}{4}$
10) $-\frac{9 \pi}{5}$
11) $\frac{15 \pi}{8}$
12) $-\frac{\pi}{10}$
13) $\frac{7 \pi}{10}$
14) $-\frac{16 \pi}{15}$
15) $\frac{88 \pi}{9}$
16) $-\frac{29 \pi}{12}$

Angles in Standard Position

Angle: generated by the rotation of 2 rays that share a fixed endpoint

- Initial Side: fixed ray
- Terminal Side: ray that rotates away from initial side

- Positive Angle: counterclockwise rotation
- Negative Angle: clockwise rotation

An angle is in standard position if it is draw in the xy-plane with its vertex at the origin and its initial side on the positive x -axis.

Example: Draw the given angle in standard position. State the quadrant in which the terminal side lies.

1. 45°

2. 225°

3. 270°

4. -60^{0}

5. 750^{0}

6. -150^{0}

7. 180^{0}

8. -75^{0}

Coterminal Angles
Two angles in standard position are coterminal angles if their terminal sides coincide. Every angle has infinitely many coterminal angles.

Coterminal Angles
To find angles that are coterminal, add or subtract any multiple of \qquad for degrees or \qquad for radians.

Examples:

1. Find three angles that are coterminal with the angle $\theta=30^{\circ}$ in standard position
2. Find three angles that are coterminal with the angle $\theta=\frac{\pi}{3}$ in standard position
3. Find an angle with a measure between 0° and 360° that is coterminal with the angle of measure 1290° in standard position.
