Math 3
Unit 3 Day 1 Notes - Intro to Polynomials

Name:

Date:
All Polynomials must have whole numbers as exponents!!
Example: $9 x^{-1}+12 x^{\frac{1}{2}}$ is NOT a polynomial.

- Expression: Numbers, symbols, and operators grouped together that show the value of something. $2 x+3$
- Equation: An equation says that two things are equal. It will have an equal sign. $\quad 7 x+2=10 x+1$
- Terms:A single number or variable, or numbers and variables multiplied together; they are separated by plus or minus signs.
- Monomial, Binomial, Trinomial, Polynomial
one two three 4 or more
term terms terms terms
- Degree:The highest exponent of a polynomial expression or equation.
- Constant, Linear, Quadratic, Cubic, Quartic, Quintic Degree:
0
1
2
34
5

Example 1: Classifying Polynomials

POLYNOMIAL	NUMBER OF TERMS	CLASSIFICATION BY TERMS	DEGREE	CLASSFICATION BY DEGREE	SKETCH THE GRAPH
$\mathrm{f}(\mathrm{x})=5 \mathrm{x}^{\circ}$	1	monomial	0	constant	
$\mathrm{g}(\mathrm{x})=4 \mathrm{x}-3$	2	binomial	1	Linear	
$\mathrm{p}(\mathrm{x})=-2 \mathrm{x}^{5}$	1	monomial	5	Quintic	
$\mathrm{w}(\mathrm{x})=\mathrm{x}^{4}-4 \mathrm{x}+2$	3	trinomial	4	Quartic	
$\mathrm{y}=-4 \mathrm{x}^{2}+\mathrm{x}+9$	3	Trinomial	2	Quadratic	
$\mathrm{h}(\mathrm{x})=4 \mathrm{x}^{3}+\mathrm{x}^{2}-9 \mathrm{x}+$ 2	4	Polynomial	3	Cubic	

The number " k " is said to be a zero of a polynomial if $f(k)=0$.

- " k " is often referred to as the root or solution
- If " k " is a real number, then $f(k)=0$ means that the graph crosses the x-axis at that value. " k " can also be referred to as an x-intercept

Check out the graphs below and identify any values that represent a zero/solution/root.

factored equation: $(x+3)(x+1)(x-1)(x-3)$
B.

factored equation: $(x+3)(x+2)(x+1)(x-1)$

factored equation: $(x+2)(x+1)(x-2)(x-3)(x-4)$

WATCH OUT! Multiplicities of Zeros
If c is a zero of the function P and the corresponding factor $(x-c)$ occurs exactly m times in the factorization of P then we say that c is a zero of multiplicity m. One can show that the graph of P crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is even.

Shape of the Graph Near a Zero of Multiplicity \boldsymbol{m}

Suppose that c is a zero of P of multiplicity m. Then the shape of the graph of P near c is as follows.

Multiplicity of c

```
m odd, m>1
```

Shape of the graph of P near the x-intercept c


```
m even, m>1
```


Example

- Find all zeros of $f(x)$ and state the multiplicity of each zero. State whether the graph crosses the x axis, or touches the x-axis and turns around, at each zero.
- $f(x)=x^{3}+5 x^{2}-9 x-45$

$$
x=-3 \quad x=-5 \quad x=3
$$

Example

Find the zeros of $f(x)=3(x+5)(x+2)^{2}$ and give the multiplicity of each zero. State whether the graph crosses the x -axis or touches the x axis and turns around at each zero.

$$
\begin{array}{rc}
x=-5 & x=-2 \\
& (\text { mult. } 2)
\end{array}
$$

The high and low points on a graph are called the extrema of the function. An extremum that is higher or lower than any other points nearby is called a relative extremum.

A relative extremum (the plural of extremum is extrema) that is higher than points nearby is called relative maximum. A relative extremum that is lower than points nearby is called a relative minimum.

A function's absolute extremum occurs at the highest or lowest point on a function. The highest point on a function is called the absolute maximum and the lowest point on a function is called the absolute minimum.

Can you identify these in the graphs on the previous page?
The end behavior of a polynomial is a description of what happens as x becomes large in the positive or negative direction. For any polynomial, the end behavior is determined by the term that contains the highest power of x, because when x is large, the other terms are relatively insignificant in size.

Even Polynomials
For example, the monomial $y==_{x}^{2}$ has the following end behavior:

$$
y=-x^{2}
$$

$$
\begin{array}{ccc}
x \rightarrow-\infty \quad y \rightarrow \infty & & x \rightarrow \infty \quad y \rightarrow \infty \\
\text { UP (left) } & \text { and } & \text { UP (right) }
\end{array}
$$

$$
x \rightarrow-\infty \quad y \rightarrow-\infty
$$

$$
x \rightarrow+\infty \quad y \rightarrow-\infty
$$

The monomial $y=x^{3}$ has the following end behavior: odd polynomials

$$
\begin{aligned}
& y=-x^{3} \\
& x \rightarrow-\infty \quad y \rightarrow \infty \\
& x \rightarrow \infty \quad y \rightarrow-\infty
\end{aligned}
$$

End Behavior of Polynomials

The end behavior of the polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ is determined by the degree n and the sign of the leading coefficient a_{n}, as indicated in the following graphs.
P has odd degree

$$
\begin{aligned}
& y \rightarrow \infty \text { as } \\
& x \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
& y \rightarrow \infty \text { as } \\
& x \rightarrow-\infty
\end{aligned}
$$

$y \rightarrow-\infty$ as
$x \rightarrow-\infty$
Leading coefficient positive

$y \rightarrow-\infty$ as
$x \rightarrow \infty$
Leading coefficient negative
P has even degree

$$
\begin{array}{ll}
y \rightarrow \infty \text { as } & y \rightarrow \infty \text { as } \\
x \rightarrow-\infty & x \rightarrow \infty
\end{array}
$$

$\begin{array}{ll}y \rightarrow-\infty \text { as } & y \rightarrow-\infty \text { as } \\ x \rightarrow-\infty & x \rightarrow \infty\end{array}$
Leading coefficient negative

Given the graph of the polynomial below

- State the intervals where the graph is increasing/decreasing (think "slope")

$$
\begin{aligned}
\text { Increasing: } & (-\infty,-2) \\
& (0, \infty)
\end{aligned}
$$

Decreasing: $(-2,0)$

- State the intervals where the graph is positive/negative (above/below the x-axis)

$$
\text { Positive: } \begin{array}{r}
(-3,-1) \\
(1, \infty)
\end{array}
$$

Negative: $(-\infty,-3)$
$(-1,1)$

$$
\begin{aligned}
& x \rightarrow-\infty \quad y \rightarrow-\infty \quad x \rightarrow \infty \quad y \rightarrow \infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { DOWN (left) and UP (right) }
\end{aligned}
$$

