Math 3 Unit 3 Day 1 Notes - Intro to Polynomials	Name: <u>Key</u> Date:				
onit 5 Day 1 Notes - mit 6 to 1 orynomiais					
	All Polynomials must have <u>whole numbers</u> as exponents!!				
Polynomial Vocabulary Review	Example : $9x^{-1} + 12x^{\frac{1}{2}}$ is NOT a polynomial.				
• Expression: Numbers, symbols, and operators grouped together that					
show the value of something. 3×43					
 Equation: An equation says that two things are equal. It will have an equal sign. フェ + ふ = i0ェ + i 					
 Terms: A single number or variable, or numbers and variables 					
multiplied together; they are separated by plus or minus					
sians.					
 Monomial, Binomial, Trinomial, Polynomial 					
one two three 4 or 1					
term terms terms term	S				

• Degree: The highest exponent of a polynomial expression or equation.

Constant, Linear, Quadratic, Cubic, Quartic, Quartic,

POLYNOMIAL	NUMBER OF TERMS	CLASSIFICATION BY TERMS	DEGREE	CLASSFICATION BY DEGREE	SKETCH THE GRAPH
$f(x) = 5 x^{\circ}$	1	monomial	0	constant	
g(x) = 4x - 3	у	binomial	1	Lincar	
$p(x) = -2x^5$	1	monomial	5	Quintic	
$w(x) = x^4 - 4x + 2$	3	trinomial	J.	Quartic	
$y = -4x^2 + x + 9$	3	Trinomial	2	Quadratic	
$h(x) = 4x^3 + x^2 - 9x + 2$	ч	Polynom: al	S	Cubic	

Example 1: Classifying Polynomials

The number "k" is said to be a **zero** of a polynomial if f(k) = 0.

- "k" is often referred to as the **root** or **solution**
- If "k" is a real number, then f(k) = 0 means that the graph crosses the x-axis at that value. "k" can also be referred to as an **x-intercept**

Check out the graphs below and identify any values that represent a zero/solution/root.

factored equation: (x+3)(x+1)(x-1)

WATCH OUT! Multiplicities of Zeros

If c is a zero of the function P and the corresponding factor (x - c) occurs exactly m times in the factorization of P then we say that c is a zero of **multiplicity** m. One can show that the graph of P crosses the x-axis at c if the multiplicity m is odd and does not cross the x-axis if m is even.

The high and low points on a graph are called the **extrema** of the function. An extremum that is higher or lower than any other points nearby is called a relative extremum.

A **relative extremum** (the plural of extremum is extrema) that is higher than points nearby is called relative maximum. A relative extremum that is lower than points nearby is called a relative minimum.

A function's **absolute extremum** occurs at the highest or lowest point on a function. The highest point on a function is called the absolute maximum and the lowest point on a function is called the absolute minimum.

Can you identify these in the graphs on the previous page?

The **end behavior** of a polynomial is a description of what happens as x becomes large in the positive or negative direction. For any polynomial, the end behavior is *determined by the term that contains the highest power of x*, because when x is large, the other terms are relatively insignificant in size.

For example, the monomial
$$y = x^2$$
 has the following end behavior:
 $x \to -\infty$ $y \to \infty$ $x \to \infty$ $y \to \infty$
 $y \to -\infty$ $y \to \infty$ $x \to \infty$ $y \to \infty$
 $y \to -\infty$ $y \to \infty$
UP (left) and UP (right)
The monomial $y = x^3$ has the following end behavior:
 $x \to -\infty$ $y \to -\infty$ $x \to \infty$ $y \to \infty$
 $y = -x^3$
 $x \to +\infty$ $y \to -\infty$
 $y \to -\infty$ $x \to \infty$ $y \to \infty$
 $y \to -\infty$ $y \to \infty$
 $y \to -\infty$ $x \to \infty$ $y \to \infty$
 $y \to -\infty$ $y \to \infty$
 $x \to -\infty$ $y \to \infty$
 $y \to -\infty$ $y \to \infty$

End Behavior of Polynomials

The end behavior of the polynomial $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is determined by the degree *n* and the sign of the leading coefficient a_n , as indicated in the following graphs.

Given the graph of the polynomial below

- State the intervals where the graph is increasing/decreasing (think "slope")

Increasing: $(-\infty, -2)$ (0, ∞) Decreasing: (-2, 0)

- State the intervals where the graph is **positive/negative** (above/below the x-axis)

Positive:
$$(-3, -1)$$

(1, ∞)
Negative: $(-\infty, -3)$
 $(-1, 1)$

.