### Unit 3 Day 2 cw(3)

- For Part 1, assume there is no multiplicity higher than 2. You may want to show work for problems 6-11 on a separate sheet.

#### I. For each given polynomial function P(x), determine the degree and the graph's end behavior.



Degree = \_\_\_\_\_

$$x \to -\infty$$
,  $y \to \_\_\_$   
 $x \to \infty$ ,  $y \to \_\_\_$ 



Degree =

$$x \to -\infty$$
,  $y \to$ \_\_\_\_\_  $x \to -\infty$ ,  $y \to$ \_\_\_\_\_  $x \to \infty$ ,  $y \to$ \_\_\_\_\_



Degree =

$$x \to -\infty, y \to \underline{\hspace{1cm}}$$
  
 $x \to \infty, y \to \underline{\hspace{1cm}}$ 



Degree = \_\_\_\_

$$x \to -\infty$$
,  $y \to \underline{\hspace{1cm}}$ 





Degree =

$$x \rightarrow -\infty$$
,  $y \rightarrow _{---}$ 

$$x \to -\infty, y \to \underline{\hspace{1cm}}$$
  
 $x \to \infty, y \to \underline{\hspace{1cm}}$ 

## II. Find the polynomial P(x) with the given zeros (z). Market and (factored form)

6.) zeros = -5, 4

- 7.) zeros =  $\frac{1}{3}$ ,  $-\frac{1}{2}$ , 0
- 8.) zeros = -6, 3 (mo2)

- 9.)  $zeros = -1, 2, \frac{3}{4} \pmod{2}$
- 10.) zeros = -4 (mo2), -3 (mo2)
- 11.) zeros =  $-\frac{2}{3}$  (mo2),  $\frac{1}{4}$ , 0 (mo2)

#### III. Complete the blank information about polynomial P(x), then graph each the polynomial.

# 12.) $P(x) = -x^3 + 2x^2 + x - 2$



zeros: \_\_\_\_\_ MMMMMMAM

End Behavior:  $x \rightarrow -\infty$ ,  $y \rightarrow \_\_\_$ 

 $x \to \infty$ ,  $y \to$ 

13.)  $P(x) = -2x^4 - x^3 + 17x^2 + 16x - 12$  14.)  $P(x) = 3x^5 - 14x^4 - x^3 + 60x^2 - 36x$ 



zeros: \_\_\_\_\_\_ **\( \mathre{M} \mat** 

**1666** y-int: \_\_\_\_\_

End Behavior:  $x \rightarrow -\infty$ ,  $y \rightarrow \underline{\hspace{1cm}}$ 





WWW.yww.y-int: \_\_\_\_

End Behavior:  $x \rightarrow -\infty$ ,  $y \rightarrow \underline{\hspace{1cm}}$ 

 $x \to \infty$ ,  $y \to ____$