Unit 3 Day $2 \mathrm{cw}(3)$

- For Part 1, assume there is no multiplicity higher than 2. You may want to show work for problems 6-11 on a separate sheet.
I. For each given polynomial function $P(x)$, determine the degree and the graph's end behavior.

Degree $=$ \qquad $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ —— $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ \qquad
2.)

Degree $=$ \qquad
$\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$
$\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
3.)

Degree $=$ \qquad
$\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
4.)

Degree $=$ \qquad
$\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$ __
5.)

Degree $=$ \qquad
$\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$
$\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
II. Find the polynomial $P(x)$ with the given zeros (z).
(factored form)

6.) zeros $=-5,4$	7.) zeros $=1 / 3,-1 / 2,0$	8.) zeros $=-6,3(\mathrm{mo} 2)$
9.) zeros $=-1,2,3 / 4(\mathrm{mo} 2)$	10.$)$ zeros $=-4(\mathrm{mo} 2),-3(\mathrm{mo} 2)$	11.$)$ zeros $=-2 / 3(\mathrm{mo} 2), 1 / 4,0(\mathrm{mo} 2)$

III. Complete the blank information about polynomial $P(x)$, then graph each the polynomial.
12.) $P(x)=-x^{3}+2 x^{2}+x-2$

CALCULATORJ
 Cusع

zeros:

___ mmwnunum

WMOUNWMan y -int:

End Behavior: $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad
$\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
13.) $P(x)=-2 x^{4}-x^{3}+17 x^{2}+16 x-12$

zeros: \qquad nunnMWMAM
wunwuwhumin y-int:
End Behavior: $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad
$\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$
14.) $P(x)=3 x^{5}-14 x^{4}-x^{3}+60 x^{2}-36 x$

zeros: \qquad inurwhunn Whatwhananamim y-int: \qquad
End Behavior: $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ $\mathrm{x} \rightarrow \infty, \mathrm{y} \rightarrow$

