AFM

Unit 3 Day 2 Notes -	Reference Angles
----------------------	-------------------------

Name_	ley	
Date		•

An angle drawn in standard position has a **reference angle**. The reference angle is an acute angle formed by the terminal side of the given angle to the x-axis.

Examples: Draw the angle in standard position and then find the reference angle.

Find the reference angle for each angle with the given measure.

d)
$$-35^{\circ}$$
 e) 245° Q3 f) -510° g) $\frac{4\pi}{9}$ Q1 h) $\frac{-8\pi}{5} + \frac{10\pi}{5}$
 $\frac{+360}{325^{\circ}}$ Q4 $\frac{+360}{5} + \frac{+360}{-150^{\circ}}$ g) $\frac{4\pi}{9}$ Q1 h) $\frac{-8\pi}{5} + \frac{10\pi}{5}$
 $\frac{+2\pi}{1.5}$
 $360 - 325$ $\frac{+360}{210^{\circ}}$ Q3 $\frac{4\pi}{9}$ $\frac{1}{9}$ $\frac{2\pi}{5}$ Q1 10
 $\frac{2\pi}{5}$ $\frac{2\pi}{5}$ 10

Reference Triangle

• Formed by "dropping" a perpendicular from the terminal ray of a standard position angle to the x-axis.

Example 1: If θ is an angle in standard position and P(-3, 4) is a point on the terminal side of θ , what is the value of $\cos \theta$?

Example 2: If θ is an angle in standard position and P(3, -2) is a point on the terminal side of θ , what is the value of

On Your Own:

3) (7, 24)

1. If θ is an angle in standard position and P(-4, 3) is a point on the terminal side of θ , what is the value of $\sin \theta$?

2. If the terminal side of θ passes through point (-8, - 6), what is the value $\cos \theta$?

Sketch the angle in standard position in the coordinate plane that passes through each given point, and find all six trigonometric ratios for that point.

4) (8, 15)
5)
$$(-3, 3\sqrt{3})$$

 $x \quad y$
 $sin \theta = \frac{3\sqrt{3}}{6} = \frac{\sqrt{3}}{2}$
 $cos \theta = -\frac{3}{6} = -\frac{1}{2}$
 $sec \theta = \frac{3}{1} = -2$
 $ton \theta = \frac{3\sqrt{3}}{-3} = -\frac{\sqrt{3}}{1}$
 $(-3)^{2} + (3\sqrt{3})^{2} = x^{2}$
 $x = 6$
 $x = 6$