Name: Key Date:

The degree of a polynomial function gives a lot of information...

	$y = ax \dots$	$y = ax^2 \dots$	$y = ax^3 \dots$	$y = ax^4 \dots$	$y = ax^5 \dots$
Type of Polynomial Function	000 LINEAR	<mark>ورو با</mark> QUADRATIC	ODD CUBIC	<mark>و ۷۶ کا</mark> QUARTIC	ODD QUINTIC
Domain	(-∞,∞)	(ھر ھ-)	(-00,00)	(-00,00)	(-@,@)
Range	(-00,00)	Based on min/max	(-00,00)	Based on min/max	(-æ,æ)
Maximum number of solutions/zeros (this is equal to the degree of the polynomial)	1	2	3	4	5
Maximum number of turns in the graph (this is one less than the degree of the polynomial)	0	1	λ	3	4
Possible shape					
of the graph <i>Positive a</i>		+ 0 			
Negative a					
End behavior	000	EVEN	000	61EN	000
Positive a	x -> - co y -> co x -> co y -> co	x -> -@ y + @	x -> - co y -> -co x -> co y -> co	x -> - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	x-)-00 y-)-00 x-)00 (- Y 00 (- X
Negative a	x 0 y - 00 x - 6 0 - 6 - X	x -> -@ y -> -@ x -> @ y -> -@	x 0 y - 0 x - 0 y - 0	x @ y @ x @ y @	x @ y - @ x - @ y - @

Zeros of a Polynomial Function

Part 1: Look at the graph and state the x-intercepts; watch out for repeated roots!

x-intercepts: (-2,0)(0,0)(3,0)

x-intercepts: (0, 0)(-3, 0)(1, 0)(-2, 0)equation: $\underline{x^{(x+3)(x-1)(x+2)}}$

Part 2: Use the calculator to find any exact roots.

A)
$$f_{(x)} = x^3 - 6x^2 + 11x - 6$$

Zeros: x=1 X=2 X=3

C)
$$f_{(x)} = x^3 - 9x^2 + 20x - 12$$

B)
$$f_{(x)} = x^3 - 9x^2 + 27x - 27$$

Zeros: x = 3 (meth. 3)

Factored Form of each function A) (x-1)(x-2)(x-3) B) (x-3)³ C) (x - 1)(x - 2)(x - 6)