Math 2
 Unit 3 Day 3 Notes - Solving Radical Equations

Example 1: $\left(\sqrt[2]{x^{1}}\right)^{x}=(3)^{2} \mid\left(x^{2}\right)^{2}=(3)^{2}$

$$
x=9 \quad x=9
$$

To solve a radical equation, we essentially square both sides of the equation to 'undo' the radical.

$$
\begin{aligned}
\sqrt{9} & =3 \\
-3 & =3
\end{aligned}
$$

This is going to happen with radical equations; we will get an \qquad extraneous solution (s). In this

Example 2: $(\sqrt{x})^{2}=(-3)^{2}$	$\sqrt{9}=-3$
$x=9$	No solution

Notice here that we solved correctly, but when we plug the solution back in, the equation is not balanced/true. context, it means that the solution is "mathematically correct, but not relevant or useful, as far as the original question is concerned".

Solving an Equation with Radicals

Step 1 Change to radical form (if you can).

Step 2 Isolate the radical. Make sure that one radical term is alone on one side of the equation.
Step 3 Apply the power rule. Raise both sides of the equation to a power that is the same as the index of the radical or the reciprocal of the rational exponent.
Step 4 Solve the resulting equation; if it still contains a radical, repeat Steps 2 and 3.
Step 5 Check all proposed solutions in the original equation.

Example 3:

$-\sqrt{x+1}+2=-4$
-2
-2
$\frac{-y \sqrt{x+1}}{-x}=\frac{-6}{-1}$
$(\sqrt{x+1})^{2}=(6)^{2}$

$x=35$

Example 4:

$\frac{2(5 x-1)^{\frac{1}{2}}-2=0+2}{\frac{2(5 x-1)^{1 / 2}}{8}=\frac{2}{2}}$
$\left((5 x-1)^{x / 2}\right)^{2}=(1)^{2}$
$\begin{aligned} 5 x-1 & =1 \\ -1 & +1\end{aligned}$
$\frac{5 x}{5}=\frac{2}{5}$
$x=\frac{2}{5}$

Example 5:

Example 6:

Example 7:

$$
\begin{aligned}
& \begin{array}{c}
3(x+2)^{\frac{3}{4}}+6=30 \\
\frac{3(x+2)^{3 / 4}}{3}=\frac{24}{3} \\
\left((x+2)^{3 / 4 / 4 / 3}\right)^{3 / 3}=(8)^{4 / 3}
\end{array} \\
& \begin{array}{r}
x+x=16 \\
-\sqrt{2} \quad-2 \\
\hline
\end{array} \\
& x=14
\end{aligned}
$$

Example 8:

Example 9:

$$
\begin{aligned}
& (\sqrt[3]{2 x+7})^{3}=(\sqrt[3]{3 x-2})^{3} \\
& \begin{array}{c}
\begin{array}{c}
2 x+7= \\
+2
\end{array} \begin{array}{r}
3 x-x \\
f_{2}
\end{array} \\
\begin{array}{c}
2 x+9= \\
-2 x
\end{array} \\
\hline x=9
\end{array}
\end{aligned}
$$

Example 10:

$(x)^{2}=\left(\sqrt{x^{2}-5 x+15}\right)^{2}$ | $x x_{2}^{x}=x / 2-5 x+15$ | $3=\sqrt{(3)^{2}-5(3)+15}$ |
| :--- | :--- |
| $\begin{array}{l}0=-5 x+15 \\ -15 \\ \frac{-15}{-5}=\frac{-5 x}{-5} \\ x=3\end{array}$ | $3=\sqrt{9}$ |
| $3=3$ | |

Example 12:

$\left(\sqrt{1-2 x-x^{2}}\right)^{2}=(x+1)^{2}$
$\begin{aligned} & y-2 x-y^{2}=x^{2}+2 x+y \\ &+x^{2}+2 x+11\end{aligned}$
$0=2 x(x+2)$

$x=0 \quad x x-2$

$\sqrt{1-2(0)-(0)^{2}}$	$=0+1$	$\sqrt{1-2(-2)-(-2)^{2}}=-2+1$
$\sqrt{1}$	$=1$	$\sqrt{1}=-1$
	$\vdots 1$	$1 \neq-1$

Example 11:
$(\sqrt{5-x})^{2}=(x+1)^{2} \rightarrow(x+1)(x+1)$

$$
\begin{array}{c|c}
\sqrt{5+(+4)}=-4+1 & \sqrt{5-1}=1+1 \\
\sqrt{9}=-3 & \sqrt{4}=2 \\
3 \neq-3 & 2=2
\end{array}
$$

Example 13:

$$
\begin{aligned}
& \frac{\sqrt{2 x+3}+\not x+1=1}{-\not x-1-1-x}(\sqrt{2 x+3})^{2}=(-x)^{2} \\
& \frac{2 \alpha x+3=x^{2}}{-2 x-3}
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{2(3)+3}+3+1=1 \mid \sqrt{2(-1)+3}-1+1=1 \\
& \begin{array}{cc}
\sqrt{9}+4=1 \\
-4 & -4
\end{array} \quad \sqrt{1}=1 \\
& 1 \stackrel{\smile}{=}
\end{aligned}
$$

