\qquad

1. Did you ever stand on a beach and wonder how far out into the ocean you could see? Or have you wondered how close a ship has to be to spot land? In either case, the function $d(h)=\sqrt{2 h}$ can be used to estimate the distance to the horizon (in miles) from a given height (in feet).
a. Cordelia stood on a cliff gazing out at the ocean. Her eyes were 100 ft above the ocean. She saw a ship on the horizon. Approximately how far was she from that ship?

b. From a plane flying at $35,000 \mathrm{ft}$, how far away is the horizon?
c. Given a distance, d, to the horizon, what altitude would allow you to see that far?
2. A weight suspended on the end of a string is a pendulum. The most common example of a pendulum (this side of Edgar Allen Poe) is the kind found in many clocks. The regular back-and-forth motion of the pendulum is periodic, and one such cycle of motion is called a period. The time, in seconds, that it takes for one period is given by the radical equation $t=2 \pi \sqrt{\frac{l}{g}}$ in which g is the force of gravity $\left(10 \mathrm{~m} / \mathrm{s}^{2}\right)$ and l is the length of the pendulum.
a. Find the period (to the nearest hundredth of a second) if the pendulum is 0.9 m long.
b. Find the period if the pendulum is 0.049 m long.
c. Solve the equation for length I.
d. How long would the pendulum be if the period were exactly 1 s ?

Solve each of the following applications.
3. The sum of an integer and its square root is 30 . Find the integer.
4. The difference between an integer and its square root is 20 . What is the integer?
5. The sum of an integer and twice its square root is 18 . What is the integer?

