
Rewrite the following using radical notation and simplify if possible:

11011	The the following asing radical	11000	ation and ompiny is possible.		
1)	$41^{\frac{5}{8}}$	2)	$49^{\frac{1}{2}}$	3)	$4^{\frac{3}{2}}$
	8 415		149		√4 ³ √64
	J		7		J64
					8
4)	$32^{\frac{1}{4}}$	5)	$\chi^{\frac{3}{5}}$	6)	$(-64)^{\frac{2}{3}}$
	4/32		5 x 3		3 (-41)2

Rewrite the following using rational exponent notation:

7)	$\sqrt{19}$	8)	$(\sqrt[4]{8})^3$	9)	$(\sqrt[3]{-18})^5$
	19		8 ³ /4		(~18)

Graph the following square root functions and then state the domain and range of each:

Solve the following radical / rational exponent equations and check for extraneous solutions:

12)	$\sqrt{x+3} + 1 = 8$	13)	$\sqrt{12-x}=x$	14)	$4 + \sqrt[3]{3x - 3} = 1$
	X= 46		x=-4 x=3		x= -8
15)	$\sqrt{4x+1} = \sqrt{x+7}$	16)	$\sqrt{x+9} = \sqrt{2x-1}$	17)	$(x+1)^{\frac{4}{3}} - 7 = 9$
			VW 1 9 V=W 1		$(x+1)^3 - 7 = 9$
	x = 2		X=10		×=7

Solve the following applications:

18)	Pilots use the function D(A) = $3.56\sqrt{A}$ to approximate the distance D in kilometers to the horizon from the
	altitude A in meters. What is the approximate distance to the horizon observed by a pilot flying at an
	altitude of 8,000 m?

The formula for the velocity of an object dropped at a specific height can be represented by the equation: $V = \sqrt{2gh}$ where V is the velocity in meters per second, g is the acceleration due to gravity and h is the height in meters at which the object was dropped. If an object has a velocity of 50 meters per second when it hits the ground and the acceleration due to gravity is $10 \ m/s^2$ then what is the height at which the object was dropped?

The function $d = \sqrt{2h}$ can be used to estimate the distance (in miles) to the horizon d from a given height (in feet) h. At what height would you be if you spotted a boat and the horizon that was 10 miles away?