Math 2
Unit 3 Quiz Review
Rewrite the following using radical notation and simplify if possible:

1$)$	$41^{\frac{5}{8}}$	$2)$	$49^{\frac{1}{2}}$	$3)$	$4^{\frac{3}{2}}$
4$)$	$32^{\frac{1}{4}}$	$5)$	$x^{\frac{3}{5}}$	$6)$	$(-64)^{\frac{2}{3}}$

Rewrite the following using rational exponent notation:

7$)$	$\sqrt{19}$	$8)$	$(\sqrt[4]{8})^{3}$	$9)$	$(\sqrt[3]{-18})^{5}$

Graph the following square root functions and then state the domain and range of each:

10)	$y=\sqrt{x-1}-3$	11)	$y=-3 \sqrt{x+3}$
	Domain: \qquad Range: \qquad		Domain: \qquad Range: \qquad

Solve the following radical / rational exponent equations and check for extraneous solutions:

12$)$	$\sqrt{x+3}+1=8$	$13)$	$\sqrt{12-x}=x$	14	$4+\sqrt[3]{3 x-3}=1$
15$)$	$\sqrt{4 x+1}=\sqrt{x+7}$	$16)$	$\sqrt{x+9}=\sqrt{2 x-1}$	$17)$	$(x+1)^{\frac{4}{3}}-7=9$

Solve the following applications:
18) Pilots use the function $\mathrm{D}(\mathrm{A})=3.56 \sqrt{A}$ to approximate the distance D in kilometers to the horizon from the altitude A in meters. What is the approximate distance to the horizon observed by a pilot flying at an altitude of $8,000 \mathrm{~m}$?
19) The formula for the velocity of an object dropped at a specific height can be represented by the equation: $V=\sqrt{2 g h}$ where V is the velocity in meters per second, g is the acceleration due to gravity and h is the height in meters at which the object was dropped. If an object has a velocity of 50 meters per second when it hits the ground and the acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$ then what is the height at which the object was dropped?
20) The function $d=\sqrt{2 h}$ can be used to estimate the distance (in miles) to the horizon d from a given height (in feet) h. At what height would you be if you spotted a boat and the horizon that was 10 miles away?

