Math 2 Unit 3 Quiz Review

Name: _____

Rewrite the following using radical notation and simplify if possible:

1)	$41^{\frac{5}{8}}$	2)	$49^{\frac{1}{2}}$	3)	$4\frac{3}{2}$
4)	$32^{\frac{1}{4}}$	5)	$\chi^{\frac{3}{5}}$	6)	$(-64)^{\frac{2}{3}}$

Rewrite the following using rational exponent notation:

7)	$\sqrt{19}$	8)	$(\sqrt[4]{8})^3$	9)	$(\sqrt[3]{-18})^5$

Graph the following square root functions and then state the domain and range of each:

10)	$y = \sqrt{x - 1} - 3$		$y = -3\sqrt{x+3}$		
	Domain:		Domain:		
	Range:		Range:		

Solve the following radical / rational exponent equations and check for extraneous solutions:

12)	$\sqrt{x+3} + 1 = 8$	13)	$\sqrt{12 - x} = x$	14)	$4 + \sqrt[3]{3x - 3} = 1$
					4
15)	$\sqrt{4x+1} = \sqrt{x+7}$	16)	$\sqrt{x+9} = \sqrt{2x-1}$	17)	$(x+1)^{\frac{4}{3}} - 7 = 9$

Solve the following applications:

18)	Pilots use the function $D(A) = 3.56\sqrt{A}$ to approximate the distance D in kilometers to the horizon from the altitude A in meters. What is the approximate distance to the horizon observed by a pilot flying at an altitude of 8,000 m?
19)	The formula for the velocity of an object dropped at a specific height can be represented by the equation: $V = \sqrt{2gh}$ where <i>V</i> is the velocity in meters per second, <i>g</i> is the acceleration due to gravity and <i>h</i> is the height in meters at which the object was dropped. If an object has a velocity of 50 meters per second when it hits the ground and the acceleration due to gravity is $10 \ m/s^2$ then what is the height at which the object was dropped?
20)	The function $d = \sqrt{2h}$ can be used to estimate the distance (in miles) to the horizon d from a given height (in feet) h . At what height would you be if you spotted a boat and the horizon that was 10 miles away?