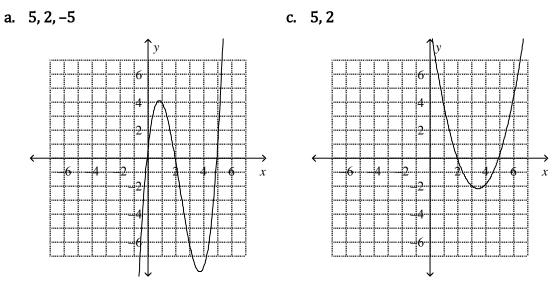
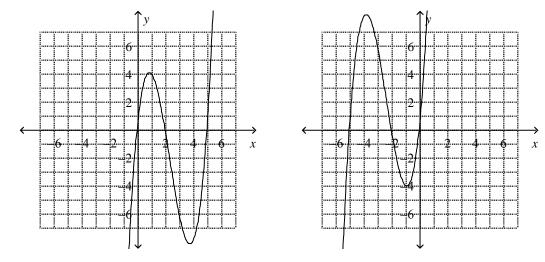

Unit 3 Test Review ANSWER KEY

1. Look at the graphs below and answer the following:



2. Which polynomial function has zeros at 5, -4, and -3?

a.	$f(x) = x^3 - 60x^2 + 2x - 23$	c. $f(x) = x^3 - 17x^2 - 420x + 7$
b.	$f(x) = x^3 + 2x^2 - 23x + 7$	d. $f(x) = x^3 + 2x^2 - 23x - 60$


- **3.** Find the zeros of $f(x) = (x + 2)^6(x + 3)^4$ and state the multiplicity.
- a. -2, multiplicity 6; 4, multiplicity -3
- b. -2, multiplicity 6; -3, multiplicity 4
- c. 6, multiplicity –2; –3, multiplicity 4
- d. 6, multiplicity –2; 4, multiplicity –3
- 4. Divide $-x^3 + 4x^2 x 3$ by x + 2. a. $-x^2 + 6x - 13$ b. $-x^2 + 2x + 11$, R-29 c. $-x^2 + 2x + 11$ d. $-x^2 + 6x - 13$, R 23
- 5. Divide $(x^4 + 12x^3 91x^2 + 26x + 20) \div (x 5)$ a. $x^3 + 17x^2 - 6x - 4$ b. $x^3 - 22x^2 - 79x + 34$ c. $x^3 + 12x^2 - 22x + 34$ d. $x^3 - 6x^2 - 4x + 17$

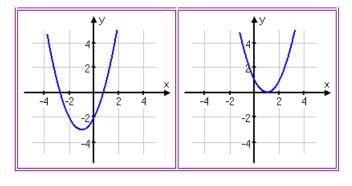
6. Find the zeros of y = x(x - 5)(x - 2). Then graph the equation.

d. 0, -5, -2

7. Determine which binomial is a factor of $-2x^3 + 14x^2 - 24x + 20$. a. x + 5 b. x + 20 c. x - 24 d. x - 5

Find the roots of the polynomial equation

8. $x^3 - 2x^2 - x + 2$ a. -1, 1, 2 b. -2, 1 (mult. 2) c. 2, -1 (mult. 2) d. 2, -2, 1


9. $x^3 - 2x^2 - 4x + 8$ a. -2, 2, 0 b. 0, 1, 2 c. 2, -2 (mult. 2) d. -2, 2 (mult. 2)

10. Complete the following table

Convert factors to roots	(x + 5) -5 is the root	(x-3) 3 is the root	(2x + 8) -4 is the root
Convert the roots to factors	x = 7 (x – 7) is the factor	x = -9 (x + 9) is the factor	x = 1/3 (3x - 1) is the factor
Identify the FACTORS of the roots shown in the graph	Factors: $x^{2}(x+1)(x-2)$	Factors: x(x+3)(x - 2)	
Multiplicity of the functions graphed above	Root x = 0, multiplicity = <u>Twice</u> Root x = -1, multiplicity = <u>once</u> Root x = 2, multiplicity = <u>once</u>	Root x = -3, multiplic Root x = -1, multiplic Root x = 2, multiplic	ity = <u>once</u>
Multiplicity of the each root in the function	$(x-3)^{2}(x+1)(x-2)^{3}$ Root: x = 3, multiplicity = <u>Twice</u> X = -1, multiplicity = <u>once</u> X = 2, multiplicity = <u>three times</u>	$(x-4)(x)(x+3)^5$ Root: x = 4, multiplicit X = 0, multiplicit X = -3, multiplicit	ty = <u>once</u>

11. Write an equation for the transformation of x^3 three units left, two units up and reflected across the x-axis. $-(x+3)^3 + 2$

12. Write an equation for each graph below as a transformation from $y = x^2$

$(x+1)^2 - 3$ $(x-1)^2$

13. A rectangular swimming pool is twice as long as it is wide. A small concrete walkway surrounds the pool. The walkway is a constant 2 feet wide and has an area of 196 square feet. Find the dimensions of the pool.

$$(2x+4)(x+4) - 2x^2 = 196$$
 $x = 15$

the pool is 15 feet by 30 feet

14. The total number of video cassettes sold from 1995 to 2005 at Bob's store can be modeled by the function $F(x) = 4x^3+14x^2+200x+1560$ and the number of kinds of video cassettes in Bob's store from 1995 to 2005 can be modeled by G(x) = 2x + 12, where x is the number of years since 1995. Using division, find the average number of each kind of video cassettes that Bob sold.

	$2x^2 - 5x + 130$
2 x + 12	$4x^3 + 14x^2 + 200x + 1560$
	$4 x^3 + 24 x^2$
	$-10x^2 + 200x + 1560$
	$-10x^2 - 60x$
	260 x + 1560
	260x + 1560