\qquad

I. Convert each degree measure to radian measure.

1. 150°
2. 210°
3. 45°
4. 240°
$\frac{5 \pi}{6}$
$\frac{7 \pi}{6}$
$\frac{\pi}{4}$
$\frac{4 \pi}{3}$
II. Convert each radian measure to degree measure.
5. $\frac{\pi}{6}$
6. $\frac{\pi}{4}$
7. $\frac{5 \pi}{6}$
8. $\frac{7 \pi}{6}$
30°
45°
150°
210°
III. In which quadrant, or on which axis, does the terminal side of the each angle lie? Draw the angle in standard position.
9. 150°

10. $-60 \circ Q 4$
Qu $\underset{y}{\sim}$
11. -240°

12. $-\frac{7 \pi}{3}$

13. $\frac{21 \pi}{4} Q_{x}$

IV. Find the coterminal angle between 0° and 360° or 0 and 2π for the following measures. What quadrant does the terminal side lie in? Give the reference angle for the given angle.
14. -24°
15. -330°
17.750°
16. $\frac{7 \pi}{3}$
17. $-\frac{17 \pi}{3}$
coteminat 336°
Ref. 24°
L
18. $\frac{11 \pi}{3}$
19. -280°
20. 940°
21. $\frac{36 \pi}{13}$
22. -624°
$\frac{5 \pi}{3}$
80°
220°
$\frac{10 \pi}{6}$
40°
$\frac{4 \pi}{6}$
84°

$$
\begin{array}{ll}
\sin \theta=\frac{3}{5} & \csc \theta=\frac{5}{3} \\
\cos \theta=\frac{-4}{5} & \sec \theta=\frac{-5}{4} \\
\tan \theta=\frac{-3}{4} & \cot \theta=-\frac{4}{3}
\end{array}
$$

$$
\begin{aligned}
& \sin \theta=\frac{3 \sqrt{13}}{13} \quad \csc \theta=\frac{\sqrt{13}}{3} \\
& \cos \theta=\frac{2 \sqrt{13}}{13} \quad \sec \theta=\frac{\sqrt{13}}{2} \\
& \tan \theta=\frac{3}{2} \quad \cot \theta=\frac{2}{3}
\end{aligned}
$$

27. (5, -5)

28. (-1,-3)

$$
\sin \theta=\frac{-\sqrt{50}}{10} \quad \csc \theta=-\frac{\sqrt{50}}{5}
$$

$$
\cos \theta=\frac{\sqrt{50}}{10} \quad \sec \theta=\frac{\sqrt{50}}{5}
$$

$$
\tan \theta=-1 \quad \cot \theta=-1
$$

V. Arc Length and Area of a Sector ** Remember, angle must be in radian measure!

29. Find the length of an arc of a circle of radius 8 m if the arc subtends a central angle of 1 radian.

$$
s=8 \mathrm{~m}
$$

30. Find the measure of a central angle θ (in degrees) in a circle of radius 5 ft if the angle is subtended by an arc of length 7 ft .

$$
\theta=80.22^{\circ}
$$

31. A circular arc of length 100 ft subtends a central angle of 70°. Find the radius of the circle.

$$
180 \rightarrow \frac{7 \pi}{18}
$$

$$
r=81.85 \mathrm{ft}
$$

32. Find the area of a sector with central angle 52° in a circle of radius 200 ft .

$$
\overline{180} \rightarrow \frac{13 \pi}{45}
$$

$$
\frac{52000 \pi}{9} \text { or } 18,151.42 \mathrm{ft}^{2}
$$

33. A sector in a circle of radius 25 ft has an area of $125 \mathrm{ft}^{2}$. Find the central angle of the sector in radians.

$$
\theta=\frac{2}{5} \text { rad. }
$$

34. $\sin \left(315^{\circ}\right)$
$=-\frac{\sqrt{2}}{2}$
35. $\cot \left(-135^{\circ}\right)$
$=1$
36. $\csc \left(\frac{5 \pi}{6}\right)$
$=2$
37. $\cos \left(-\frac{22 \pi}{3}\right)$
$=\frac{-1}{2}$
38. $\cos 225^{\circ}$

$$
=-\frac{\sqrt{2}}{2}
$$

39. $\tan 210^{\circ}$
$=\frac{\sqrt{3}}{3}$
40. $\tan 420^{\circ}$
$=\sqrt{3}$
41. $\csc \frac{7 \pi}{6}$
$=-2$

VIII. Find the value of the SIX trigonometric functions of θ from the information given.

42. $\tan \theta=\frac{4}{1} \sin \theta<0$

$$
\begin{aligned}
& \sin \theta=\frac{-4 \sqrt{17}}{17} \\
& \cos \theta=-\frac{\sqrt{17}}{17} \\
& \tan \theta=4
\end{aligned}
$$

$$
\csc \theta=-\frac{\sqrt{17}}{4}
$$

$$
\sec \theta=-\sqrt{17}
$$

43. If $\cos \theta=\stackrel{A}{2} / 5$, and $\sin \theta<0$, find the remaining trig functions.

$$
\begin{array}{ll}
\sin \theta=\frac{-\sqrt{21}}{5} & \csc \theta=-\frac{5 \sqrt{21}}{21} \\
\cos \theta=\frac{2}{5} & \sec \theta=\frac{5}{2}
\end{array}
$$

IX. Linear and Angular Speed $\tan \theta=\frac{-2 \sqrt{21}}{21} \quad \cot \theta=\frac{-\sqrt{21}}{2}$
44. A phonograph record has a radius of 3 inches and revolves at 45 rpm . Find the linear speed of the outside edge of the record in inches per second.

$$
\rightarrow 90 \pi=\theta
$$

$$
v=\frac{9 \pi}{2} \text { in } 1 \mathrm{sec} \text { or } 14.14 \text { in } 1 \mathrm{sec}
$$

45. The propeller of an airplane has a radius of 3 ft . The propeller is rotating at 2250 revolutions per minute. Find the linear (in feet per second) and angular speed (in radians per second) of the tip of the propeller.
$\rightarrow 4500 \%$

$$
\begin{array}{cc}
V=225 \pi \mathrm{fl} / \mathrm{sec} & w=75 \pi \text { rad } l \mathrm{sec} \\
\text { or } & \text { or } \\
706.86 \mathrm{ft} / \mathrm{sec} & 235.62 \mathrm{rad} l \mathrm{sec} .
\end{array}
$$

46. The fastest human on a bicycle was John Howard, who achieved an incredible speed of 152.3 mph in 1985 If the tires on John's bicycle have a diameter of 30 inches and turn at rate of 141 revolutions per minute in a warm-up, what is the bicycle's speed in mph

X. State the midline, amplitude, period, and phase shift.

47. $y=-\cos \left(\frac{1}{2}\left(x-\frac{\pi}{2}\right)\right)-2$
mid line: $y=-2$
Amplitude: 1
Period: 4π
Phase shift: right $\frac{\pi}{2}$
48. $y=-\sin (2 x)+4$
mid line: $y=4$
Amplitude: I
Period: II
Phase Shift: None
49. $y=\cos (x+\pi)-2$
mid line: $y=-2$
Amplitude: 1
Period: 2π
Phase shift: left π
50. $y=\cos \frac{1}{2} x$
mid line: $y=0$
Amplitude: 1
Period: 4π
Phase Shift: None
51. $y=\frac{1}{2} \sin 2\left(x+\frac{\pi}{6}\right)-1$
mid line: $y=-1$
Amplitude: $\frac{1}{2}$
Period: II
Phase shift: left $\frac{\pi}{6}$
52. $y=2 \sin \left(\frac{1}{2} x\right)-1$
mid line: $y=-1$
Amplitude: 2
Period: 4π
Phase shift: None
53. $y=-2 \sin (x)-1 \quad y=\sin x \quad y=-\sin x$

Amplitude: 2
Midline: $y=-1$
Period: 2π
Phase shift: no ne
54. $y=\frac{1}{2} \cos (x)-2 \quad y=\cos x \quad y=\frac{1}{2} \cos x$

Midline: $y=-2 \quad$ Amplitude: $\frac{1}{2}$ Period: $2 \bar{\pi}$ Phase shift: none

