Name: kcy
Date:

Every exponential function has an inverse function called the logarithmic function.

What is an inverse function?

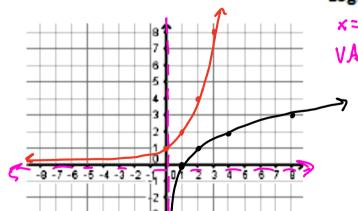
An <u>inverse</u> switches the x and y coordinates. It makes a reflection over the line y = x. Use the definition of inverse to sketch the graph of the exponential function and its inverse, the logarithmic function.

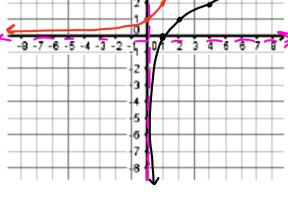
We can switch between logarithmic form and exponential form: $\log_b M = N$ is equivalent to $b^N = M$

Complete the following chart:

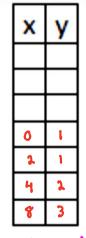
Log Form	Exp. Form	
log_{10} 100,000 = 5	105 = 100,000	
10928 = 3	$2^3 = 8$	
$\log_2\left(\frac{1}{8}\right) = -3$	$\lambda^{-3} = \frac{1}{8}$	
[095 5 = C	$5^r = s$	

Graphing Log Functions


$$y = 2^x$$

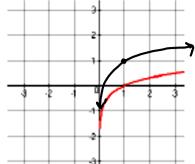

Exponential Function

X	У	
	V	
-2	.25	
-1	۲.	
0	1	
1	2	
2	4	
3	8	
D : C	- 00 ,	d

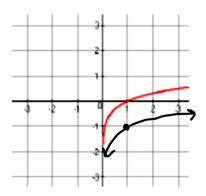

$$0: (-\infty, \infty)$$

$$R: (0, \infty)$$

Graphing:	
y= log(x)	
109(2)	
$y = \log$	2X
ogarithmic F	unction



0: (0, ∞)

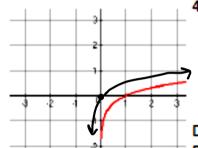

 $R:(-\infty,\infty)$

Transformations of Logarithmic Functions

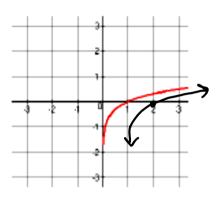
$$1] y = \log(x) + 1$$

2]
$$y = \log(x) - 1$$

Domain: (0,∞)


Range: (-∞,∞)

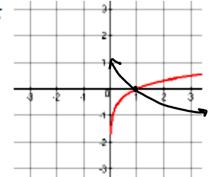
Domain: (0, ∞)


Range: (-00,00)

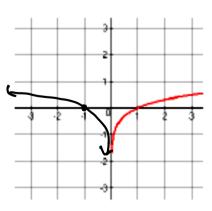
What affect does adding or subtracting a value "outside" the x have on the graph of the log function?

$$3] y = \log(x+1)$$

 $y = \log(x-1)$


Domain: (-1, ∞)

Range: (- 00 100)


Domain: (1,∞)
Range: (-∞,∞)

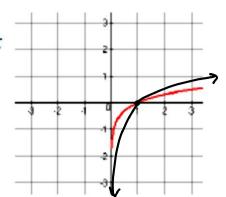
What affect does adding or subtracting a value from x have on the graph of the log function?

$$5] \qquad y = -\log x$$

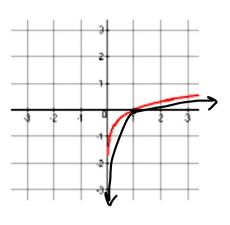
 $y = \log(-x)$

Domain: (0, ∞)

Range: (-∞,∞)


Domain: (-∞,0)

Range: (-∞, ∞)


What affect does multiplying x by a negative have on the graph?

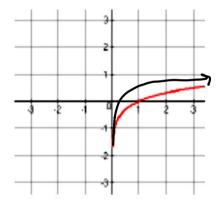
What affect does multiplying by a negative out front have on the graph?

$$y = 2\log x$$

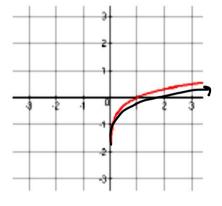
$$y = \frac{1}{2} \log x$$

Domain: (0,00)

Range: $(-\infty, \infty)$


Domain: (0,00)

Range: (-∞,∞)


What affect does multiplying the log by a constant greater than 1 have on the graph?

What affect does multiplying the log by a constant between 0 and 1 have on the graph?

9] $y = \log(2x)$

$$y = \log\left(\frac{1}{2}x\right)$$

Domain: (0, ∞)

Range: (-∞, ∞)

Domain: (0,∞)

Range: (-00,00)

What affect does multiplying the x by a constant greater than 1 have on the graph?

What affect does multiplying the x by a constant between 0 and 1 have on the graph?