AFB

Unit 4 Day 3 Notes - Exponential Applications
Name \qquad
Date

Compound Interest

Compound interest is interest compounded after different amounts of time periods, therefore becoming an exponential function.

Compound Interest is calculated by the formula

$$
A(t)=P\left(1+\left(\frac{r}{n}\right)\right)^{(n)}
$$

$\mathrm{A}(\mathrm{t})=$ accumulated amount after t years (principal + interest)
$\mathrm{P}=$ Principal investment (starting amount)
$r=$ rate (percent changed to a decimal)
$\mathrm{n}=$ number of times per year compounded
$\mathrm{t}=$ time (in years)
Key words:
Yearly $=\downarrow$
annually \quad Monthly $=12 \quad$ Quarterly $=4 \quad$ Semi-annually $=2 \quad$ Daily $=365$
Ex 1: A sum of $\$ 1000$ is invested at an interest rate of 12% per year. Find the amounts in the account after 3 years if interest is compounded annually, semiannually, quarterly, monthly and daily

Ex 2: How much would you have to invest in order to have $\$ 700$ after 2 years if the interest is compounded quarterly at an interest rate of 7.5% ? $\quad \rightarrow P=$?

$$
n=4 \quad 4.075=r
$$

A
t

$$
\begin{aligned}
& 700=P\left(1+\left(\frac{.075}{4}\right)\right)^{(4.2)} \\
& \frac{700}{1.16}=\frac{1.16 P}{1.16}
\end{aligned}
$$

$$
p \approx \$ 603.45
$$

"Euler's number," or \boldsymbol{e}, is a constant (similar to pi). "e" is approximately 2.71828. It is the limit of $(1+1 / n)^{n}$ as n becomes large.

Used in cases where a quantity increases at a rate proportional to its value (bank account producing interest, population increasing as members reproduce, etc)

The natural exponential function is the exponential function $f(x)=e^{x}$ with base e.
We can use e for several types of word problems.

Continuously Compounded Interest

We can describe a function that compounds interest as frequently as possible as a function that compounds interest continuously. The small problem with continuous compounding is that if continuous means constantly, what value would we use for n in our compound interest formula? You will quickly figure out that there is no value for n that appropriately represents continuous. We can easily define n as 365 if we decide to compound interest once a day, but the value for n is intangible when you are referring to compounding interest continuously. So this all leads to the question - what formula can we use to compound interest on a principal amount continuously?

$$
A=P e^{r t}
$$

$A(t)=$ accumulated amount after t years (principal + interest)
$\mathrm{P}=$ Principal investment (starting amount)
$r=$ rate (percent changed to a decimal)
$\mathrm{t}=$ time (in years)

Ex 3: Find the amount after 3 years if $\$ 1000$ is invested at an interest rate of 12% per year, compounded continuously.

$t \quad P$	
A	$=1000 e^{(.12 \cdot 3)}$
A	$\approx \$ 1433.32$
$P=?$	

Ex 4: Find the initial amount invested if after 3 years at an interest rate of 5.75% compounded continuously, you have $\$ 7500$.

A

Exponential Growth/Decay
A population that experiences exponential growth increases according to the model

$$
n(t)=n_{0} e^{r t}
$$

$n(t)=$ population at time t
$\mathrm{n}_{0}=$ initial population
$\mathrm{r}=$ relative growth rate (write as a decimal)
$\mathrm{t}=$ time - \# of cycles **Must be in the same unit**

Ex 5: The initial bacterium count in a culture is 400 . A biologist later makes a sample count of bacteria in the culture and finds that the relative rate of growth is 40% per 2 hours.
a) Find a function that models the number of bacteria after t hours.
b) What is the estimated count after 8 hours?

Ex 6: A certain breed of rabbit was introduced into a small island about 8 years ago. The current rabbit population on the island is estimated to be 4100 , with a relative growth rate of 55% per year. What was the initial size of the rabbit population?

Half Life

If m_{0} is the initial mass of a radioactive substance with half-life h, then the mass remaining at time t is modeled by the function: $m(t)=m_{0} e^{-r t}$

Where relative decay rate $r=\frac{\ln 2}{n}$ and $\mathrm{n}=$ half-life cycle
***UNITS OF TIME ARE THE SAME THROUGHOUT THE PROBLEM!
Ex 7: Polonium-210 has a half life of 140 days. Suppose a sample of this substance has a mass of 300 mg .
a) Find a function that models the amount of the sample remaining at time t
b) Find the mass remaining after one year

Ex 8: The half-life of a radioactive substance is one hundred fifty-three days. How many days will it take for seventy percent of the substance to decay?

