Name \qquad
Date

The logarithm with base a of a positive number x is defined as:
a of a positive number x is defined as:

\[\)| For $x>0 \text { and } 0<a \neq 1$ |
| :--- |
| $y=\log _{a} x$ | if and only if\(x=a^{a y}

\]\quad negative $\#$'s

$$
\begin{aligned}
& \operatorname{common} \\
& \log (\mathrm{x})=\log _{\mathrm{a}} \mathrm{x} \text { is called the logarithmic function with base a }
\end{aligned}
$$

Because the logarithm with base e is used so frequently it has been given a special name Natural logarithm and abbreviation \ln. The function is defined as:

$$
f(x)=\log _{e} x=\ln x \quad x>0 \text { is the natural logarithmic function. }
$$

By definition, the natural log function has an inverse function which is an exponential function.

Properties of Logarithms

Properties of Natural Logarithms

All of the properties of logarithms listed above work for Natural Logarithms. There are also some special properties that apply only to the Natural Logarithms.

Examples:

Evaluate the following:
a) $\log _{5} 1=0 \quad\left(s^{\circ}=1\right)$
b) $\log _{8} 8^{8}=8$
c) $\log _{5} \mathbb{S}^{\prime}=1$
d) $\log _{5} 12=12$
e) $\pi^{8}=8$
f) $\ln \left(\frac{1}{e^{2}}\right)=\operatorname{tax} x^{-2}=-2$
g) $\ln 5=1.6094$

Solving for x .

Use the definition of logs to find x
a. $\log _{3} x=4$
$x=81$
b. $\log _{x} 125=3$
$\sqrt[3]{x^{3}}=\sqrt[2]{125}$ $\underbrace{x=5}$
c. $\log _{6} 36=x$
d. $\log _{4} x=\frac{1}{2}$
e. $\log _{3}\left(\frac{1}{9}\right)=x$
$3^{x}=\frac{1}{9}$
$3^{x}=9^{-1}$
$3^{x}=3^{-2}$
f. $\log _{3} 243=\frac{x \times 2}{x}$
$3^{x}=243$
$3^{x}=3^{5}$
$x=5$
d. $\log _{4} 2=x$
$4^{x}=2$
$2^{2 x}=3^{3}$
$\frac{2 x}{2}=\frac{1}{2}$
e. $10{ }^{10095}$
f. $\log _{9}\left(\frac{1}{3}\right)=x$
9. $\ln e^{3}$
$\begin{array}{ll}9^{x}=\frac{1}{3} & \frac{q x}{2}=-\frac{1}{2} \\ 9^{x}=3^{-1} & L^{x=-\frac{1}{2}} \\ 3^{2 x}=3^{-1} & \end{array}$
Laws of Logarithms

Examples: Use the laws of logs to rewrite each expression

c) $\log _{5}\left(x^{3} / y^{6}\right)$ $\log _{5} x^{3}+\log _{5} y^{6} \rightarrow 3 \log _{5} x+6 \log _{5} y$
b) $\log \sqrt{5} \rightarrow \log ^{1 / 2} \rightarrow \frac{1}{2} \log 5$ or $\frac{\log 5}{2}$
d) $\ln \left(\frac{a b}{\sqrt[3]{c}}\right) \rightarrow \ln$ $\frac{a b}{c^{13}}$ $4 \ln a+\ln b-\frac{1}{3} \ln c$
Use the laws of logs to evaluate each expression or
a) $\log _{4}(2)+\log _{4}(32)$
c) $-\frac{1}{3} \log _{2} 8$
$-\frac{\ln c}{3}$
b) $\log _{2}(80)+\log _{2}(5) \downarrow$

$$
\log _{2} 8^{\frac{-1}{3}}=x
$$

$$
\begin{array}{c|c}
\log _{4}(2 \cdot 32) & \log _{2}(80.5) \\
\log _{4} 64=x & \log _{2}(400)=x \\
4^{x}=64 & \text { change of base } \\
4^{x}=4^{3} & \frac{\log (400)}{\log (2)} \approx \\
x=3 &
\end{array}
$$

$$
\begin{aligned}
2_{2} & =8^{-1 / 3}(\cot \text { in } \\
2^{x} & =\frac{1}{2}
\end{aligned}
$$

$$
2^{x}=2^{-1}
$$

