AFB

Name \qquad
Unit 4 Day 6 - Solving Exp. \& Log. Equations Applications
Date \qquad
$t \quad 2 P \rightarrow A$
$r 0.08=r$

1. How long does it take for an investment to double in value if it is invested at 8% per annum compounded monthly? Compounded continuously?
$A=P\left(1+\frac{r}{n}\right)^{n t} \quad G_{n}=12 \quad P$

$$
\begin{aligned}
& \frac{2 f}{t}=\frac{p e^{.08 t}}{t .08 t} \\
& 2=e^{.08 t} \\
& \ln 2=\ln e^{.08 t} \\
& \frac{\ln 2}{.08}=\frac{.09 t}{.08} \\
& t \approx 8.7 \text { years }
\end{aligned}
$$

2. If Sam has $\$ 100$ to invest at 8% per annum compounded monthly, how long will it be before he has $\$ 150$? If the compounding is continuous, how long will it be? $n=12 \quad t \quad A$

$$
\begin{aligned}
& \begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
\frac{150}{100} & =\frac{10 e\left(1+\left(\frac{.08}{12}\right)\right)^{12 t}}{12 t} \\
1.5 & =1.007 \\
\frac{\log 1.5}{12 \log 1.007} & =\frac{12 t \log 1 / 007}{12 \log 1.007} \quad t \approx 4.8 \mathrm{yrs} .
\end{aligned} \\
& \begin{array}{l}
\frac{150}{100}=\frac{100 e^{.08 t}}{100} \\
1.5=e^{.08 t} \\
\ln 1.5=t-.08 t \\
\frac{\ln 1.5}{.08}=\frac{.08 t}{.0 t} \quad t \approx 5.1 \text { yrs. }
\end{array}
\end{aligned}
$$

3. How many years will it take for an initial investment of $\$ 10,000$ to grow to $\$ 25,000$? Assume a rate of interest of 6% compounded continuously

$$
r=.06 \mathrm{f} \quad \begin{align*}
A & =P e^{r t} \\
\frac{25000}{10000} & =\frac{+0000 e^{.06 t}}{10000} \\
\frac{\ln 2.5}{.06} & =\frac{.06 t}{.0 t} \\
t & \approx 15.3 \mathrm{yrs}
\end{align*}
$$

4. Sears charges $\mathbf{1 9 . 2 5} \%$ per month on the unpaid balance for customers with charge accounts (compounded monthly). A customer charges $\$ 200$ and does not pay her bill for 6 months. What is the bill at that time?
5. Rupurt will be buying a new car for $\$ 15000$ in three years. How much money should he ask his parents for now so that, if he invests it at 5% compounded continuously, he will have enough to buy a new car?
6. On January 1, Kim places $\$ 1000$ in a certificate of deposit that pays 6.8% compounded continuously and matures in 3 months. Then Kim places the $\$ 1000$ and the interest in a passbook account that pays 5.25% compounded monthly. How much does Kim have in the passbook account on May 1?

$$
p=a e^{r t}
$$

continuously
7. The population of a colony of mosquitoes obeys the law of uninhibited growth. If there are 1000 mosquitoes initially, and there are 1800 after one day, what is the size of the colony after 3 days? How long is it till there are 10000 mosquitoes?

$$
\begin{array}{c|c|c}
\frac{1800}{1000}=\frac{\text { recce }}{1008} & P=1000 e^{.59 .3} & \frac{10000}{1000}=\frac{1000 e^{.59 t}}{100 e} \\
1.8=e^{r} & P \approx 5871 & 10=e^{.59 t} \\
\ln 1.8=\ln e^{r} & \text { mosquitoes } & \frac{\ln 10}{.59}=\frac{.59 t}{.59} \quad t \approx 3.9 \text { days } \\
r \approx .59 & &
\end{array}
$$

8. The population of a southern city follows the exponential law. If the population doubled in size over an 18month period and the current population is 10000, what will be the population 2 years from now?
. The half-life of Radium is 1690 years. If ten grams are present now, how much will be present in 50 years?
9. A piece of charcoal is found to contain 30% of the carbon-14 it originally had. When did the tree from which the charcoal came die? Use 5600 years as the half-life of carbon-14.
10. After the release of radioactive material into the atmosphere in Ukraine in 1986, the hay in Austria was contaminated by iodine-131 (half life 8 years). If it is okay to feed the hay to cows when 10% of the iodine131 remains, how long do the farmers need to wait to use this hay?
11. The size of P of a certain insect population at time t (in days) obeys the equation $P=500 e^{0.02 t}$.

After how many days will the population reach 1000 ? When will it reach 2000 ?
18. The half-life of radium is 1690 years. If 10 grams are present now, how much will be present in 50 years?

