Math 2 Unit 4B Extra Credit

Name: Date:

Directions: Check which congruence postulate you would use to prove that the two triangles are congruent.

Congruent Triangles Worksheet #1 Name _____ Period _____

I. State whether these triangles are congruent by SSS, SAS, or none.

II. State whether these triangles are congruent by ASA, AAS, or none

Congruent Triangles Worksheet #2

Name _

Period _____

 \heartsuit

I State whether these triangles are congruent by SSS, SAS, or none

Practice. *Fill in the missing reasons*

6. Given: $\angle YLF \cong \angle FRY$, $\angle RFY \cong \angle LFY$ **Prove:** $\triangle FRY \cong \triangle FLY$

Statement	Reason
1. $\angle YLF \cong \angle FRY$	
2. $\angle RFY \cong \angle LFY$	
3. $\overline{FY} \cong \overline{FY}$	
4. $\triangle FRY \cong \triangle FLY$	

7. Given: $\overline{LT} \cong \overline{TR}$, $\angle ILT \cong \angle ETR$, $IT \parallel ER$

Prove: $\triangle LIT \cong \triangle TER$

Statement	Reason
1. $\overline{LT} \cong \overline{TR}$	
2. $\angle ILT \cong \angle ETR$	
3. <i>IT</i> <i>ER</i>	
4. $\angle LTI \cong \angle ERT$	
5. $\triangle LIT \cong \triangle TER$	

Statement	Reason
1. <i>C</i> is midpoint of \overline{BD}	
2. $\overline{AB} \perp \overline{BD}$ and $\overline{BD} \perp \overline{DE}$	
3. $\overline{BC} \cong \overline{CD}$	
4. $\angle BCA \cong \angle ECD$	
5. $\angle ABC$ and $\angle EDC$ are right angles	
6. $\angle ABC \cong \angle EDC$	
7. $\Delta ABC \cong \Delta EDC$	

9. Given: $\overline{BA} \cong \overline{ED}$ C is the midpoint of \overline{BE} and \overline{AD}

Prove: $\triangle ABC \cong \triangle DEC$

Statement	Reason
1. $\overline{BA} \cong \overline{ED}$	
2. <i>C</i> is the midpoint of \overline{BE} and \overline{AD}	
3. $\overline{BC} \cong \overline{EC}$	
4. $\overline{AC} \cong \overline{DC}$	
5. $\triangle ABC \cong \triangle DEC$	

Statement	Reason
1. $\overline{BC} \cong \overline{DA}$	
2. \overline{AC} bisects $\angle BCD$	
3. $\angle BCA \cong \angle DCA$	
4. $\overline{AC} \cong \overline{AC}$	
5. $\triangle ABC \cong \triangle CDA$	

Practice. *Write a 2-column proof for the following problems.*

11.

Given: $\angle ADB$ and $\angle CDB$ are right angles $\angle A \cong \angle C$ Prove: $\triangle ADB = \triangle CDB$

Example 2: Given: J is the midpoint of IL. J is the midpoint of HK. Prove: $\Delta IJH \cong \Delta LJK$

Statement:	Reason:

You Try! Given: WX || YZ, WX \cong YZ Prove: $\Delta WXZ \cong \Delta YZX$ (Hint: It should take anywhere from 4-5 steps)

Reason:

You Try! Given: \overline{JM} bisects $\angle J$. $\overline{JM} \perp \overline{KL}$

Prove: $\Delta JMK \cong \Delta JML$

Statement:	Reason:	

