Math 2
Unit 5 Day 4 Notes - Solving Right Triangles Two Ways to Label Triangles:

Name: \qquad
Date:
A

Practice: Label the triangles below using H for hypotenuse, O for opposite and A for adjacent. The reference angle is the one with the arc marking in it.
1)

5)
4)

\int_{0}^{A}
6)

3)

7)

9)
10)

8)

Solving Right Triangles - Finding Missing Sides: \rightarrow going to use sin, cos, $+\tan$

SOH
САН
TBA

$$
\sin x=\frac{\text { opp. }}{\text { hyp. }} \quad \cos x=\frac{\text { adj. }}{\text { hyp. }} \quad \tan x=\frac{\text { opp. }}{\text { adj. }}
$$

Examples: Find x in each of the triangles below. Round your final answers to the nearest hundredth. (Figures may not be drawn to scale.)
a)

$$
\begin{aligned}
& \text { SOA eft TOA } \\
& \frac{\tan 57}{1}=\frac{x}{12} \\
& x=12 \tan 57 \\
& x \approx 18.48
\end{aligned}
$$

b)

$$
x \approx 13.05
$$

c)

$$
x=8 \cos 20
$$

$x \approx 7.52$

$$
x \approx 7.52
$$

$$
x \approx 6.63
$$

e)

$$
\tan 25=\frac{3}{x}
$$

$$
x=\frac{3}{\tan 25}
$$

$$
x \approx 6.43
$$

f)

SOA CAH 堿
$\cos 63=\frac{x}{9}$

$$
\begin{gathered}
x=9 \cos 63 \\
x \approx 4.09
\end{gathered}
$$

$$
x \approx 6.43
$$

$$
x \approx 4.09
$$

Solving Right Triangles - Finding Missing Angles: \rightarrow going to use $\sin ^{-1}, \cos ^{-1}+\tan ^{-1}$

$$
\text { SOH } \quad \text { CAH } \quad \text { TOA Inverse tris fonc. }
$$

$\sin x=\frac{O}{H}$	$\cos x=\frac{A}{H}$	$\tan x=\frac{0}{A}$

(146) $(5 / 14)$

Unit 5 Day 4 CW/HW

1. $x \approx$ \qquad $y \approx$ \qquad		2. $\begin{aligned} & \mathrm{x} \approx \\ & \mathrm{y} \approx \end{aligned}$
3. $\mathrm{x} \approx$ \qquad $y \approx$ \qquad		4. $x \approx$ $y \approx$
5. $\mathrm{x} \approx$ \qquad $y \approx$ \qquad		6. $\begin{aligned} & x \approx \\ & y \approx \end{aligned}$
$\begin{aligned} & \text { 7. } \\ & \mathrm{x} \approx \\ & \mathrm{y} \approx \\ & \mathrm{~m} \angle \mathrm{~B}= \end{aligned}$		8. $\begin{aligned} & x \approx \\ & y \approx \\ & m \angle A= \end{aligned}$
9. $\mathrm{w} \approx$ \qquad $\mathrm{x} \approx$ \qquad $y \approx$ \qquad $\mathrm{z} \approx$ \qquad		10. $\mathrm{h} \approx$ \qquad $x \approx$ \qquad $y \approx$ \qquad
11. How tall is the tree?		12. A man who is 6 feet tall is flying a kite. The kite string is 75 feet long. If the angle that the kite string makes with the line horizontal to the ground is 35°, how far above the ground is the kite?

13. A ladder 14 feet long rests against the side of a building. The base of the ladder rests on level ground 2 feet from the side of the building. What angle does the ladder form with the ground?

Son CAH TAt $\cos x=\frac{2}{14} \quad x=82^{\circ}$ $\cos ^{-1}\left(\frac{2}{14}\right)$
(14) A 24 -foot ladder leaning against a building forms an 18° angle with the side of the building. How far is the base of the ladder from the base of the building?

15. A road rises 10 feet for every 400 feet along the pavement (not the horizontal). What is the measurement of the angle the road forms with the horizontal?

16. A 32 -foot ladder leaning against a building touches the side of the building 26 feet above the ground. What is the measurement of the angle formed by the ladder and the ground?

$x=54^{\circ}$
17. The directions for the use of a ladder recommend that for maximum safety, the ladder should be placed against a wall at a 75° angle with the ground. If the ladder is 14 feet long, how far from the wall should the base of the ladder be placed?

$x \approx 3.6 \mathrm{ft}$.
18. A kite is held by a taut string pegged to the ground. The string is 40 feet long and makes a 33° angle with the ground. Supposing that the ground is level, find the vertical distance from the ground to the kite.

19. A wire anchored to the ground braces a 17 -foot pole. The wire is 20 feet long and is attached to the pole 2 feet from the top of the pole. What angle does the wire make with the ground?

$$
x=49^{\circ}
$$

20. A jet airplane begins a steady climb of 15° and flies for two ground miles. What was its change in altitude?

x

$$
x \approx .54 \mathrm{mi}
$$

2 mi

