Math 3 Unit 6 Day 2 Notes – Proofs (Parallel Lines and Triangles)

Name:_	Kcy	 	
Date:			

What can we use to Prove?			
Definition of Vertical Angles	Linear Pair Postulate	Definition of Midpoint	
Definition of Supplementary Angles	Corresponding Angle Postulate	Definition of Bisect	
Definition of Parallel Lines	Alternate Exterior Angle Theorem	Substitution Property	
Definition of Perpendicular Lines	Alternate Interior Angle Theorem	Angle Addition Postulate	
Reflexive Property (AB = AB)	Transitive Property (a = b, b = c, then $a = c$)	Segment Addition Postulate	

Example 1: Given: $a \parallel b$ and $c \parallel d$ Prove: $\angle 1 \cong \angle 13$

	Statements	Reasons		\wedge	1	
1.	allb + clld	1. Given	,	1/2	9/10	
2.	∠1 ≅ ∠5	2. Corresponding L's		3/4	11/12	> a
3.	25 = 213	3. Corresponding L's	63	5/6	13/14	→ b
4.	21 2 213	4. Transitive Prop.		¢	1 d	
					-	

Triangle Congruence				
Name:	Picture		Definition	
Angle-Side-Angle (ASA)		A	two triangles that have two pairs of angles congruent and the side between them congruent	
Side-Angle-Side (SAS)	\sum		two triangles that have two corresponding sides that are congruent and the angle between them congruent	
Side-Side-Side (SSS)			two triangles that have three corresponding sides that are congruent	
Angle-Angle-Side (AAS)			two triangles that have two pairs of angles congruent and the side not between them congruent	
Hypotenuse-Leg (HL)			two right triangles that have hypotenuses and a pair of congruent legs	

Example 2: Given: J is the midpoint of IL. J is the midpoint of HK. Prove: Δ IJH $\cong \Delta$ LJK

Statement:	Reason:
J is the midpoint of IL J is the midpoint of HK	Given
ΙΤ Ξ ΤΓ	Befn. of midpoint
H1 ≤ TK	Defn. of midpoint
LITH ≅ LKJL	vertical L's
QIJH ≅ DLJK	SAS

You Try! Given: WX || YZ, WX \cong YZ Prove: $\Delta WXZ \cong \Delta YZX$ (Hint: It should take anywhere from 4-5 steps)

Statement:	Reason:
WXII YZ WX ZYZ	Given
LWZX & LZXY	Alternate Interior L's
∠ w x 2 ≅ ∠ x 2 Y	Alternate Interior L's
QMXS Z DYSM	AAS

You Try! Given: \overline{JM} bisects $\angle J$. $\overline{JM} \perp \overline{KL}$

Prove: $\Delta JMK \cong \Delta JML$

Statement:	Reason:
JM bisects LJ	Given
JM I KL	Given
LJMK + LJML are 90°	Defn. of L Lines
LJMK 🖀 LJML	Defn. of right L's Defn. of Bisector
<ra>KJW ≅ < WJL</ra>	Defn. of Bisector
JM ≙ JM	Reflexive Prop.
DIMK & DIML	AsA

