Independent Events	two events where the and event does not affect the list event
Dependent Events	two events where the anat event does affect the list event

Example: Suppose a die is rolled and then a coin is tossed.

1. Explain why these events are independent
rolling a die has not affect on flipping a coin
2. Fill in the table to describe the sample space.

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head	H 1	H2	H3	H4	HS	$H 6$
Tails	TI	TD	T3	TH	TS	TC

3. How many outcomes are there for rolling the die? 6
4. How many outcomes are there for tossing the coin? 2
5. How many outcomes are there in the sample space of rolling the die and tossing the coin? 12
6. Is there another way to decide how many outcomes are in the sample space?

$$
6 \cdot 2=12
$$

Probability of Independent Events
 $$
P(A \cup B)=P(A) \cdot P(B)
$$

Example: Use the table from questions \#1-6.

	Roll 1	Roll 2	Roll 3	Roll 4	Roll 5	Roll 6
Head	HI	$\mathrm{H2}$	$\mathrm{H3}$	$1+4$	HS	HG
Tails	Tl	T	T 3	TH	TS	T

1. $\mathrm{P}($ rolling a 3$)=1 / 6$
2. $P($ tails $)=1 / 2$
3. $\mathrm{P}($ rolling a 3 AND getting tails $)=1 / 6 \cdot 1 / 2=1 / 12$
4. $P($ rolling an even $)=3 / 6=1 / 2$
5. $P($ heads $)=1 / 2$
6. $\mathrm{P}($ rolling an even AND getting heads $)=1 / 2 \cdot 1 / 2=1 / 4$

Example:

7. At City High School, 30% of students have part-time jobs and 25% of students are on the honor roll. What is the probability that a student chosen at random has a part-time joband is on the honor roll? Write your answer in context.

$$
.3 \cdot .25=.075
$$

Example: The following table represents data collected from a grade 12 class in DEF High School

	Plans after High School		
Gender	University	Community College	Total
Males	28	56	84
Females	43	37	80
Total	71	93	164

Suppose 1 student was chosen at random from the grade 12 class.
8. What is the probability that the student is female?

$$
80 / 164=20 / 41 \text { or } .488
$$

9. What is the probability that the student is going to university?

$$
71 / 164 \text { or } .433
$$

Now suppose 2 people both randomly chose 1 student from the grade 12 class. Assume that it's possible for them to choose the same student. (repetition is allowed)
10. What is the probability that the first person chooses a student who is female and the second person chooses a student who is going to university?

$$
(20 / 41) \cdot(26 / 164)=\frac{355}{1681} \text { or } .211
$$

Example: Suppose a card is chosen at random from a deck of cards, replaced, and then a second card is chosen.
11. Would these events be independent? How do we know?
Yes; card is replaced in the deck
12. What is the probability that both cards are 7 s ?

$$
\left(\frac{4}{52}\right) \cdot\left(\frac{4}{52}\right)=\frac{1}{169} \text { or } .006
$$

Determine whether the events are independent or dependent
13. Selecting a marble from a container and selecting a jack from a deck of cards. I
14. Rolling a number less than 4 on a die and rolling a number that is even on a second die. I
15. Choosing a jack from a deck of cards and choosing another jack, without replacement. D
16. Creating a seating chart for your math class. D

- We cannot use the multiplication rule for finding probabilities of dependent events because the one event affects the probability of the other event occurring.
- Instead, we need to think about how the occurrence of one event will affect the sample space of the second event to determine the probability of the second event occurring.
- Then we can multiply the new probabilities.

Example: Suppose a card is chosen at random from a deck, the card is NOT replaced, and then a second card is chosen from the same deck. What is the probability that both will be 7's?
17. This is similar to the earlier example, but these events are dependent! How do we know?

Because once we choose one 7, there are only 3 i's left
18. How does the first event affect the sample space of the second event?
There is one less card in the deck
19. Calculate the probability that both cards will be 7's

$$
(4 / 52) \cdot(3 / 51)=4 / 221 \text { or } .005
$$

20. A box contains 5 red marbles and 5 purple marbles. What is the probability of drawing 2 purple marbles and 1 red marble in succession without replacement?

$$
(5 / 10) \cdot(4 / 9) \cdot(5 / 8) \cdot(4 / 7)=5 / 63 \text { or } .079
$$

21. In Example 20, what is the probability of first drawing all 5 red marbles in succession and then drawing all 5 purple marbles in succession without replacement?

$$
(5 / 10) \cdot(4 / 9) \cdot(3 / 8) \cdot(2 / 7) \cdot(1 / 6) \cdot(5 / 5) \cdot(4 / 4) \cdot(3 / 3) \cdot(2 / 2) \cdot(6 / 1)=1 / 252 \text { or } .004
$$

On Your Own

\#1-3 When rolling two number cubes...

1. What is the probability of rolling a sum that is greater than 7 ?
2. What is the probability of rolling a sum that is odd?
3. Are the events, rolling a sum greater than 7 , and rolling a sum that is odd, independent? Justify your response.
\#4-6 Determine if the events are independent or not. Explain your reasoning.
4. Flipping a coin and getting heads and rolling a number cube and getting a 4
5. When rolling a pair of number cubes consider the events: getting a sum of 7 and getting doubles
6. From a standard deck of cards consider the events: draw a diamond, shuffling the deck then drawing a heart.
7. You have a box with 3 blue marbles, 2 red marbles, and 4 yellow marbles. You are going to pull out one marble, record its color, put it back in the box and draw another marble. What is the probability of pulling out a red marble followed by a blue marble?
8. Consider the same box of marbles as in the previous example. However in this case, we are going to pull out the first marble, leave it out, and then pull out another marble. What is the probability of pulling out a red marble followed by a blue marble?
