Unit 6 Day 4 Notes - Parallelograms \qquad

Properties of Parallelograms

Example 1: Given: $\square A B C D$ is a parallelogram.
Prove: $\mathrm{AB}=\mathrm{CD}$ and $\mathrm{BC}=\mathrm{DA}$,
Statement

1. $A B C D$ is a parallelogram
2. $A B \cong D C+B C \cong A D / A B\|D C+B C\| A D$
3. $<1 \cong<4,<3 \cong<2$
4. $\mathrm{AC} \cong \mathrm{AC}$
5. $\Delta \mathrm{ABC} \cong \triangle \mathrm{CDA}$
6. $A B \cong C D+B C \cong D A$

Reason

1. Given
2. Definition of a parallelogram

Example 2: Given: $\square \mathrm{ABCD}$ is a parallelogram.
Prove: AC and BD bisect each other at E.

Statement	Reason	
1. ABCD is a parallelogram	1. Given	
2. $\mathrm{AB} \\| \mathrm{DC}$	2. Defn. of \square (parallelogram)	
3. $\angle 1 \cong<4,<2 \cong<3$	3. Alternate Interior \angle 's	
4. $\mathrm{AB} \cong D C$	4. Def. of \square (parallelogram)	
5. $\triangle A \varepsilon B \cong \triangle C \varepsilon D$	5. ASA	
6. $A E \cong C E, B E \cong D E$	6. CPCTC	
7. $A C+B D$ Bisect each other Q ε	7. Definition of bisector	

Example 3: For what values of x and y must each figure be a parallelogram?
a)

$\begin{array}{ll}\frac{8 x}{2}=\frac{30}{2} & \frac{18}{15}+y=24 \\ x=15 & y=9\end{array}$

b)

$$
\begin{array}{rr}
\frac{11 x}{11}=\frac{55}{11} & \begin{array}{r}
5 y+45 \\
-185 \\
-5=51 \\
\hline
\end{array} \\
\frac{5 y}{5}=\frac{125}{5} \\
y=25
\end{array}
$$

