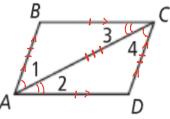
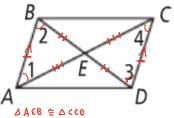
Math 3 Unit 6 Day 4 Notes – Parallelograms

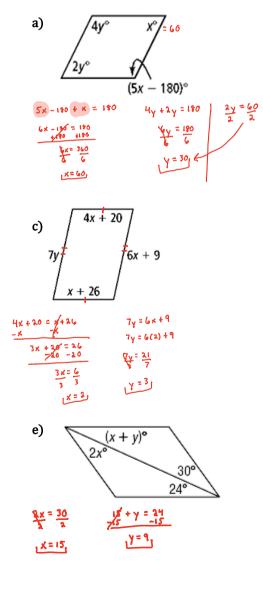

Name:	 Le	1
	 	T

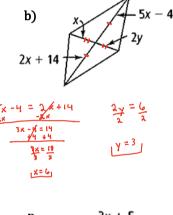
Date:__

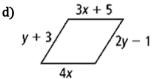

Properties of Parallelograms				
Sides	A parallelogram is a quadrilateral with both pairs of opposite sides parallel.			
	If a quadrilateral is a parallelogram, the <mark>2 pairs of opposite sides are congruent.</mark>	AB ≅ DC		
	If a quadrilateral is a parallelogram, the <mark>2 pairs of opposite angles are congruent</mark> .	∠A ≅LC		
Angles	If a quadrilateral is a parallelogram, the consecutive angles are supplementary. (Adds up to 180°)	2A + 2D = 170° = 180° (C + 2C = 180°		
	If a quadrilateral is a parallelogram and <u>one angle is a right angle,</u> then all angles are right angles.	No. V.		
Diagonals	If a quadrilateral is a parallelogram, the diagonals bisect each other. Ly splits into two equal parts			
	If a quadrilateral is a parallelogram, the diagonals form two congruent triangles.			

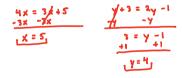
Example 1: Given: \Box ABCD is a parallelogram. Prove: AB = CD and BC = DA.

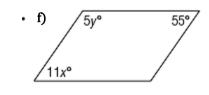
Statement	Reason	
1 . ABCD is a parallelogram	1. Given	
2. AB = DC + BC = AD AB 110C + BC AD	2. Definition of a parallelogram	
3 . <1 ≅ <4, <3 ≅ <2	3. Alternate Interior L's	
4. AC ≅ AC	4. Reflexive Prop.	
5. $\triangle ABC \cong \triangle CDA$	5. ASA / SSS	
6. AB ≅ CO + BC ≅ DA	6. CPCTC Congruent parts of a congruent Triangle are congruent	




Example 2: Given: □ABCD is a parallelogram. Prove: AC and BD bisect each other at E.




Statement	Reason	E 3
1. ABCD is a parallelogram	1. Given	A C C C C C C C C C C C C C C C C C C C
2. AB DC	2. Defn. of 🖾 (parallelogram)	
3. <1 ≅ <4, <2 ≅ <3	3. Alternate Interior L's	
4. AB $\stackrel{\sim}{=}$ DC	4. Defn. of Z (parallelogram)	
5. ⊿A€B ≅ △ < € O	5. ASA	
6. AE $\stackrel{\sim}{=}$ CE, BE $\stackrel{\sim}{=}$ DE	6. CPCTC	
7. AC + BD Bisect each other @ E	7. Definition of bisector	


Example 3: For what values of x and y must each figure be a parallelogram?

