\qquad

Rectangle	Rhombus	Square
A rectangle is a parallelogram with four right angles.	A rhombus is a parallelogram with four congruent sides.	A square is a parallelogram with four congruent sides and four right angles.
A rectangle has all the properties of a parallelogram PLUS: 4 right angles	A rhombus has all the properties of a parallelogram PLUS: Diagonals are congruent $A C \cong B D$ - congruent sides Diagonals bisect angles Diagonals are perpendicular	A square has all the properties of a parallelogram PLUS: All the properties of a rectangle • All the properties of a rhombus

Example 1: Solve for x and the measure of each angle if \square DGFE is a rectangle.

$$
(2 x+8)^{\circ}
$$

$$
\begin{gathered}
9 x-6+2 x+8=90^{\circ} \\
11 x+\not x=90^{\circ} \\
\frac{-2}{2}-2 \\
\frac{11 x}{11}=\frac{88}{11}
\end{gathered}
$$

$$
9(8)-6
$$

$$
m \angle D \varepsilon 6=66^{\circ}
$$

$$
\begin{aligned}
& 2(\varepsilon)+8 \\
&< \cos \varepsilon
\end{aligned}=24^{\circ}
$$

$$
m \angle G \varepsilon F=24^{\circ}
$$

Example 2: $\square \mathrm{ABCD}$ is a rectangle whose diagonals intersect at point E .
a) If $\mathrm{AE}=36$ and $\mathrm{CE}=2 \mathrm{x}-4$, find x .

$$
\begin{aligned}
& 2 x-14=36 \\
& t / 4+4
\end{aligned} \quad \begin{aligned}
\frac{2 x}{2} & =\frac{40}{2} \quad x=20
\end{aligned}
$$

b) If $\mathrm{BE}=6 \mathrm{y}+2$ and $\mathrm{CE}=4 \mathrm{y}+6$, find y .

$$
\begin{aligned}
& 6 y+x=4 y+6 \\
& -4 y-2-4 y-2 \\
& \hline \frac{2 y}{2}=\frac{4}{2}
\end{aligned}
$$

Example 3: Using the diagram to the right to answer the following if $\square \mathrm{ABCD}$ is a rhombus.
a) Find the $\mathrm{m} \angle 1$.
b) Find the $\mathrm{m} \angle 2$.

$$
=90^{\circ}
$$

c) Find the $m \angle 3$.
d) Find the $\mathrm{m} \angle 4$.

Example 4: Solve for each variable if the following are rhombi.
a)

		Isosceles Trapezoids	Trapezoid Midsegment		
		An isosceles trapezoid is a trapezoid with congruent legs.	The median (also called the midsegment) of a trapezoid is a segment that connects the midpoint of one leg to the midpoint of the other leg.		
		A trapezoid is isosceles if there is only: - One set of parallel sides - Base angles are congruent - Legs are congruent $R T \cong A P$ - Diagonals are congruent $R P \cong T A$ - Opposite angles are supplementary	Theorem: If a quadrilateral is a trapezoid, then a) the midsegment is parallel to the bases and b) the length of the midsegment is half the sum of the lengths of the bases (1) $\overline{M N}\left\\|\frac{(a)}{T P}, \overline{M N}\right\\| \overline{R A}$, and (2) $M N=\frac{1}{2}(T P+R A)$ (b)		

Example 5: CDEP is an isosceles trapezoid and $\mathrm{m}<\mathrm{C}=65$. What are $\mathrm{m}<\mathrm{D}, \mathrm{m}<\mathrm{E}$, and $\mathrm{m}<\mathrm{F}$?
 $m \angle D=150^{\circ}-65^{\circ}=115^{\circ}$
$m \angle \varepsilon=115^{\circ}$
$m \angle F=65^{\circ}$

Example 7: QR is the midsegment of trapezoid LMNP.
What is x and the length of LM?

$$
\begin{aligned}
2\left(\frac{1}{2}\right)(4 x-10+8) & =(x+\sqrt{2}) 2 \\
\left.\frac{4 x-2}{}\right) & =2 x+4 \\
\frac{2 x+2}{2} & =\frac{6}{2} \\
x & =3 \quad \text { LM }
\end{aligned}
$$

Example 6: What are the values of x and y in the isosceles triangle below if DE || DC?

You Try! TU is the midsegment of trapezoid WXYZ. What is x and the length of TU?

$\underset{i \rightarrow 1}{4}$		If a quadrilateral is a kite, then:			
		Its diagonals are perpendicular.	Its diagonals bisect the opposite angles.	One pair of opposite angles are congruent.	One diagonal bisects the other.

Example 4: Quadrilateral DEFG is a kite. What are $\mathrm{m}<1$, $\mathrm{m}<2$, and $\mathrm{m}<3$?

You Try! Quadrilateral KLMN is a kite. What are $\mathrm{m}<1$, $\mathrm{m}<2$, and $\mathrm{m}<3$?

