Math 3
Unit 6 Day 8 Notes - Arcs \& Angles

Part 1: Central Angles

A central angle is an angle whose vertex is the center of the circle and whose other two points lie on the circle. $\angle L P K$ and $\angle J P L$ are central angles in circle P.

Measure of a central angle $=$ Measure of its intercepted arc

Find each measure.

1. $m \angle S C T=75^{\circ}$
2. $m \angle S C U=135^{\circ}$
3. $m \angle S C Q=90^{\circ}$
4. $m \angle Q C T=195^{\circ}$ or 165°

In $\odot O, m \angle B O A=44$. Find each measure.

5. $m \overparen{B A}=44^{\circ}$
6. $m \overparen{B C}=136^{\circ}$
7. $m \overparen{C D}=44^{\circ}$
8. $m \widehat{A C B}=316^{\circ}$
9. $m \widehat{B C D}=180^{\circ}$
10. $m \widehat{A D}=136^{\circ}$

Part 2: Inscribed Angles

An inscribed angle is an angle whose vertex is ON the circle and whose sides contain chords of the circle.

$$
\angle C B A \text { is an inscribed angle. }
$$

Minor arc CA is the intercepted arc of $\angle C B A$

The measure of an inscribed angle is half the measure of the intercepted arc.

For example: If the measure of $\operatorname{arc} \mathrm{CA}$ is 110°, then $m \angle C B A=55^{\circ}$.

$m \angle A B C=\frac{110^{\circ}}{2}$
$m \angle A B C=55^{\circ}$
$m \angle A B C=55^{\circ}$

There are 3 corollaries that give us more information on the relationship between an inscribed angle and a circle.
Corollary 1: Two inscribed angles that intercept the same arc are congruent.

Corollary 2: An angle inscribed in a semicircle is a right angle.
If $\overline{A C} \begin{aligned} & \text { is a diameter of Circle } 0 \text {, then } \\ & \angle A B C \text { is a right angle. }\end{aligned}$

Corollary 3: The opposite angles of a quadrilateral inscribed in a circle are supplementary. (Remember an inscribed polygon has every vertex of the polygon touching the circle.)
11. Use the given circle for both problems.
a. If the $m \angle D E F=70$, find the $100^{\circ} \quad$ b. If the measure of arc $D E=100$ and the measure of arc DF.

$$
\begin{gathered}
\hat{D F}=70 \times 2=140^{\circ} \\
\widehat{D F}=140^{\circ}
\end{gathered}
$$

 measure of arc $E F=140$, find the $m \angle D E F$

$$
\begin{array}{rlrl}
0^{\circ} & & \angle D E \xi=\frac{120}{2} \\
360^{\circ}-140-100 & m & =120^{\circ} & m \angle D E F=60^{\circ}
\end{array}
$$

12. Find the indicated angles.

$$
m \angle 1, m \angle 2
$$

13. Find the indicated angles.
$m \angle X, m \angle Y$

Now, "You Try" these:
14. Refer to the figure. Find each measure.
a. $m \angle A B C=90^{\circ}$
b. $m \overparen{C D}=118^{\circ}$
c. $m \widehat{A D}=62^{\circ}$
d. $m \angle B A C=34^{\circ}$
e. $m \angle B C A=56^{\circ}$
f. $m \overparen{A B}=112^{\circ}$
g. $m \widehat{B C D}=186^{\circ}$
h. $m \widehat{B D A}=248^{\circ}$

15. Find $m \angle D$ and $m \angle C$ if $m \angle A=85$ and $m \angle B=70$.

Part 3: Angles Formed Two Chords of a Circle (Vertex not at center of circle)

An angle formed by two chords of a circle whose vertex is not at the center of the circle has a measure equal to half the SUM of the intercepted arcs.

For example: If the measure of arc AB is 40° and the measure of $\operatorname{arc} \mathrm{DC}$ is 80°, the $m \angle A P B=60^{\circ}$.
16) Find the value of x.
17) Find the value of y.

$m \angle x=\frac{1}{2}(29+47)$

$m<x=\frac{1}{2}(76)$
$m \angle x=38^{\circ}$
$m \angle y=180-38=142^{\circ}$

Part 4: Angles Formed By Secants, Tangents and/or Chords
An angle formed by a tangent and a secant (or chord) that intersect on a circle at the point of tangency is one-half the measure of the intercepted arc.

For example: If the measure of $\operatorname{arc} \mathrm{ADB}$ is 290°, then $m \angle A B C=145^{\circ}$.

The measure of an angle formed by two secants, a tangent and a secant, or two tangents that intersect outside a circle is half the DIFFERENCE of the intercepted arcs.

For example: If the measure of $\operatorname{arc} A B$ is 110 and the measure of $\operatorname{arc} C D$ is 30 , then the

$$
m \angle A P B=\frac{1}{2}(110-30)=\frac{1}{2}(80)=40 \circ .
$$

Find the indicated angle measure
18. $m \angle 3$

19. $m \angle 6$

Find the value of x.
20.

21.

22.

$m \angle x=\frac{1}{2}(135-45)$
$m<x=\frac{1}{2}(90)$
$m \angle x=45^{\circ}$

Part 5: Segments Formed By Secants, Tangents and/or Chords

For a given point and circle, the PRODUCT of the lengths of the two segments from the point to the circle is constant along any line through the point and the circle.

$a \cdot b=c \cdot d$

$(w+x) w=(\sqrt{y+z}) y$
$w^{2}+w x=y^{2}+y z$

$(y+z) y=t^{2}$

Example 4: Find the value of the variable in $\odot 0$.
a)

b)

c)

You Try! What is the value of the variable to the nearest tenth?

Algebra Find the value of each variable using the given chord, secant, and tangent See Problem 3. lengths. If the answer is not a whole number, round to the nearest tenth.
15.

$\frac{16 x}{26}=\frac{300}{26}$
$x=11.5$
19.

$$
\begin{aligned}
& 5^{2}+5(x)=7^{2}+7(15) \\
& 28+5 x=154 \\
&-24(5+25 \\
& \hline \frac{5 x}{5}=\frac{129}{5} \\
& x=25.8 .
\end{aligned}
$$

17.

$$
\begin{aligned}
& 13^{2}+c(13)=11^{2}+20(11) \\
& \begin{array}{c}
1661+13 c= \\
-341 \\
-169
\end{array} \\
& \hline \frac{33 c}{13}=\frac{172}{13}
\end{aligned}
$$

20.

