
Standard Form of Circles

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

Center: | Radius: |

Point on the circle:

Example 1: Write the equation of a circle with the given information.

a) Center (0,0), Radius=10

$$r = 10^{2} = 100$$

$$x^2 + y^2 = 100$$

b) Center (2, 3), Diameter=12 ÷ 2

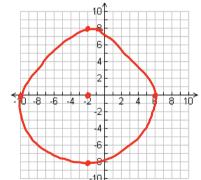
$$h = \lambda^{r \text{ change }} k = 3 \qquad r = 6$$

$$(x-2)^2 + (y-3)^2 = 36$$

Example 2: Determine the center and radius of a circle the given equation.

a)
$$x^2 + y^2 = \frac{9}{4} = 1$$

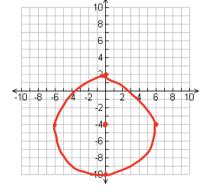
$$(0,0)$$
 r: $\frac{3}{4}$


b)
$$(x+3)^2 + (y-5)^2 = 81 = r^2$$

Example 3: Use the center and the radius to graph each circle.

a) $(x+2)^2 + y^2 = 64$

Center: (-2, 0)


Radius: **%**

b) $x^2 + (v+4)^2 = 36$

Center: (0, -4)

Radius: 6

Writing an Equation with a Pass-Thru Point

Step 1: Substitute the center (h, k) into the equation

Step 2: Substitute the "pass through point (x, y)" into the equation for x and y.

Step 3: Simplify and solve for r².

Step 4: Substitute r² back into the equation from Step 1.

Example 4: Write the equation of a circle with a given center (2, 5) that passes through the point (5,-1).

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$(x-h)^{2} + (y-s)^{2} = r^{2}$$

$$(3)^{2} + (-6)^{2} = r^{2}$$

 $q + 36 = r^{2}$

Writing an Equation with Two Points on the Circle

Midpoint Formula (ceuter)

Find the midpoint (radius) between the two endpoints, and then follow steps 1-4.

$$\left(\frac{x_1+x_2}{2} \quad 1 \quad \frac{y_1+y_2}{2}\right)$$

Example 5: Write the equation of a circle with endpoints of diameter at (-6, 5) and (4, -3).

$$(x-h)^{2} + (y-k)^{2} = r^{2}$$

$$(x+1)^{2} + (y-1)^{2} = r^{2}$$

$$(-6+1)^{2} + (5-1)^{2} = r^{2}$$

$$(-5)^{2} + (4)^{2} = r^{2}$$

$$35 + 16 = r^{2}$$

$$41 = r^{2}$$

$$(x+1)^{2}+(y-1)^{2}=41$$
Center: (-

$$\left(\frac{\left(-6+4\right)}{2}, \frac{\left(5+\left(-3\right)\right)}{2}\right)$$
Contert $\left(-1, 1\right)$

Writing the Equation of a Circle in Standard Form	
Step 1:	Group x's and group y's together.
Step 2:	Move any constants to the right side of the equation.
Step 3:	Use complete the square to make a perfect square trinomial for the x's and then again for the y's. *Remember, whatever you do to one side of the equation, you must do to the other!
Step 4:	Simplify factors into standard form of a circle!

Example 5: Write the equation of a circle in standard form. Then, state the center and the radius.

Example 5: Write the equation of a constant
$$x^2 + y^2 + 4x - 8y + 16 = 0$$

(x + 4) $x^2 + 4x + 4y + 4y^2 - 8y + 16$

(x + 2) $x^2 + 4x + 4y + 4y^2 - 8y + 16$

(x + 2) $x^2 + 4x + 4y + 4y^2 - 8y + 16$

(x + 2) $x^2 + 4x + 4y + 4y^2 - 8y + 16$

b)
$$x^2 + y^2 + 6x - 4y = 0$$

c)
$$x^2 + y^2 - 6x - 2y + 4 = 0$$

d)
$$x^2 + y^2 + 8x - 10y - 4 = 0$$
 $x^2 + 3x + 10 + y^2 - 10y + 25 = 4 + 10 + 25$
 $(x + 4)^2 + (y - 5)^2 = 45$
 $(c: (-4, 5) = 145 \text{ or } 35$